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Abstract: Recent research on the application of remote sensing and deep learning-based 

analysis in precision agriculture demonstrated a potential for improved crop management 

and reduced environmental impacts of agricultural production. Despite the promising 

results, the practical relevance of these technologies for actual field deployment requires 

novel algorithms that are customized for analysis of agricultural images and robust to 

implementation on natural field imagery. The paper presents an approach for analyzing 

aerial images of a potato crop using deep neural networks. The main objective is to 

demonstrate automated spatial recognition of a healthy versus stressed crop at a plant 

level. Specifically, we examine premature plant senescence resulting in drought stress on 

Russet Burbank potato plants. The proposed deep learning model, named Retina-UNet-

Ag, is a variant of Retina-UNet (Jaeger et al., 2018) and includes connections from low-

level semantic dense representation maps to the feature pyramid network. The paper also 

introduces a dataset of field images acquired with a Parrot Sequoia camera carried by a 

Solo unmanned aerial vehicle. Experimental validation demonstrated the ability for 

distinguishing healthy and stressed plants in field images, achieving an average Dice 

score coefficient of 0.74. A comparison to related state-of-the-art deep learning models 

for object detection revealed that the presented approach is effective for the task at hand. 

The method applied here is conducive toward the assessment and recognition of potato 

crop stress (early plant senescence resulting from drought stress in this case) in natural 

aerial field images collected under real conditions. 

 

Keywords: Deep learning; crop health assessment; potato crop; precision agriculture; 

object detection. 

 

INTRODUCTION 

Precision agriculture (PA) is a concept for site-specific crop management based on observation and 

measurement of crop variability in a field (Pierce and Nowak, 1999; Stafford, 2000). The aim in PA is to 

improve crop yield and reduce the environmental impacts of agricultural production by decreased use of 

agrochemical substances. Despite the confirmed economic and environmental benefits of PA, professional 

reports and scientific surveys point to low rates of technology adoption (Pathak et al., 2019; Pierpaoli et al., 

2013). Barriers towards increased adoption include the development of advanced data processing methods 

and platforms for automated seeding, weeding, and harvesting (Castle et al., 2016; Nahry et al., 2011). For 
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instance, the use of cost-effective remote sensing systems in PA, such as unmanned aerial vehicles (UAVs), 

equipped with multispectral or hyperspectral sensors, provides an appealing means for quick observation of 

large fields (Maes et al., 2017; Martinelli et al., 2015; Pádua et al., 2017; Walsh et al., 2018). Intervention 

based on gathered sensor data and follow-up data analysis is beneficial toward reducing or avoiding 

economic losses (Behmann et al., 2015; Berdugo et al., 2014; Bravo et al., 2003). Similarly, the 

implementation of advanced machine learning algorithms for image analysis offers new insights for crop 

management in PA and contributes to extracting subtle patterns in acquired field imagery (Barth et al., 

2018; Chen et al., 2014; Nagaraju and Chawla, 2020; Singh et al., 2018).  

In the published literature, a large body of work employed image analysis via conventional machine 

learning approaches for crop health assessment (Barbedo, 2013; Hamuda et al., 2016). These approaches 

often involve an initial step of image segmentation into plant and soil pixels, typically from extracted color-

index information, such as Normalized Difference Vegetation Index (NDVI), Excess Green Index (ExG), 

and Excess Green minus Excess Red Index (ExGR) (Bégué et al., 2018; Candiago et al., 2015; Kyratzis et 

al., 2017; Xue and Su, 2017). Frequently applied image analysis methods encompass support vector 

machines (Camargo and Smith, 2009; Rumpf et al., 2010), k-nearest neighbors, random forests (Lottes et 

al., 2017), and multivariate Gaussian classifiers (Hamuda et al., 2016). However, conventional machine 

learning approaches rely on manually fine-tuning a set of parameters for a given collection of images, 

which may lead to decreased performance on images taken under different environmental conditions (e.g., 

illumination, weather), growing stages, or soil types (Abade et al., 2020; Milioto et al., 2017). 

A recent line of research emphasized the advantages of deep learning (DL)-based methods for image 

analysis in PA (Abade et al., 2020; Ghosal et al., 2018; Nagaraju and Chawla, 2020; Ramcharan et al., 

2017; Taghavi Namin et al., 2018; Yamamoto et al., 2017). Contrary to the conventional methods that 

typically employ steps of segmentation, feature extraction, and classification, DL models comprise multi-

layer architectures that integrate all processing steps into one single framework for automated feature 

extraction and mapping the inputs to an output function (Goodfellow et al., 2016; LeCun et al., 2015; 

Zhang et al., 2018). The capacity to learn rich hierarchical features at multiple levels of abstraction by DL 

models has been conducive to improved performance and generalization abilities, in comparison to 

vegetation indices and manually crafted features (Kamilaris and Prenafeta-Boldú, 2018). Several early 

studies for DL-based crop health assessment used convolutional neural networks (CNN) models for 

classification of healthy and diseased leaves of bananas (Amara et al., 2017), apples (Liu et al., 2018), 

cassava (Ramcharan et al., 2017), tomatoes (Yamamoto et al., 2017), and soybean (Ghosal et al., 2018). 

Similarly, Mohanty et al. (2016) applied a CNN for classification of 14 crop species and 26 diseases using 

a dataset of healthy and diseased plant leaves images (Hughes and Salathe, 2015).  

Although DL-based classification models have proven beneficial for analysis of close-up images of 

leaves or crop (e.g., taken using a cellphone camera) (Mohanty et al., 2016; Sladojevic et al., 2016), recent 

studies shifted the emphasis toward more advanced image analysis tasks, such as image segmentation and 

object detection. The major advantages and practical relevance of such tasks in comparison to image 

classification originate from the capability to identify and localize objects (e.g., stressed areas) in 

agricultural field images. Image segmentation is the process of partitioning an image into multiple 

segments, by delineating the edges of the objects of interest and separating them from the background. In 

the context of PA, DL-based approaches were implemented for segmentation of crop and weed (Champ et 

al., 2020; Dyrmann et al., 2016; Gao et al., 2020; Mortensen et al., 2016; Sa et al., 2017), fruits (Zhang et 

al., 2020), and seeds (Toda et al., 2020). Object detection is a related image analysis task, where the goal is 

to determine  whether particular objects of interest (e.g., diseased or otherwise stressed plants) are present 

in an image, identify the locations of all present objects of interest in the image, and determine the category 

(i.e., healthy vs. stressed, or specific stress type) for all found objects. In previous PA studies, a body of 

work employed DL for object detection with application to fruit counting (Apolo-Apolo et al., 2020; 
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Bargoti and Underwood, 2017; Rahnemoonfar et al., 2017; Sa et al., 2016) and fruit load estimation 

(Koirala et al., 2019; Villacrés and Auat Cheein, 2020), disease detection (Fuentes et al., 2017; Rançon et 

al., 2019), and crop damage assessment (HamidiSepehr et al., 2019). The choice of applied algorithms for 

image segmentation versus object detection in agriculture has been primarily task-driven. Still, preparing 

ground truth labels for image segmentation requires demarcating all objects in images, which is 

substantially more time-consuming in comparison to defining the location of a set of bounding boxes in 

object detection. Subsequently, object detection methods have been the preferred choice in many related 

tasks (Abade et al., 2020; HamidiSepehr et al., 2019) where the approximate locations of the bounding 

boxes for the objects of interest provide a satisfactory level of accuracy.  

Despite the impressive progress in recent years and the surging number of related papers and 

applications, there are still numerous challenges for the actual deployment of DL methods in the field. 

Specifically, the major obstacles involve: (a) difficulty in processing natural crop images, characterized 

with large crop variability across regions and growing stages, changing environmental conditions, 

overlapping and moving crop/plants/leaves, and cluttered background; (b) scarcity of crop datasets with 

corresponding labels and annotations; and (c) advanced and robust algorithms designed and optimized for 

processing specific crop images.  

In this work, we attempt to partially address all of the above challenges. Specifically, we introduce a 

novel DL architecture for drought stress assessment of potato crop in natural aerial images, as well as we 

introduce a dataset of agricultural images. A Parrot Sequoia camera mounted on a Solo UAV flying at a 

low altitude of three meters above the ground was used for acquiring images of a potato field. We manually 

annotated the regions of healthy and stressed potato plants with rectangular bounding boxes, and posted the 

dataset on a dedicated website for open public access. The proposed DL architecture is a variant of the 

Retina-UNet (Jaeger et al., 2018) model for object detection, which employs a Feature Pyramid Network 

(FPN) for generating high-level feature representations for object prediction at multiple levels of 

abstraction. We refer to the proposed model as Retina-UNet-Ag, due to the application in agriculture. The 

connections between the layers in Retina-UNet-Ag are designed for detecting regions with moderate size. 

The experimental validation indicates ability for spatial recognition of crop stress in aerial field imagery. 

We conducted a performance comparison to four state-of-the-art architectures for object detection, 

including: Mask Region-based Convolutional NN (Mask R-CNN) (He et al., 2017), RetinaNet (Lin et al., 

2020), Faster Region-based Convolutional NN (Faster R-CNN) (Ren et al., 2015), and You Only Look 

Once (YOLO) v3 (Redmon and Farhadi, 2017). In the comparative analysis, our proposed network 

produced more accurate predictions in comparison to these object detection models for the considered task. 

In the published literature, a number of other studies reported research on DL-based identification of 

biotic crop stresses, such as water stress (An et al., 2019; King and Shellie, 2016; Ramos-Giraldo et al., 

2020) and cold damage (Yang et al., 2019), as well as abiotic crop stress, such as nutrient deficiencies 

(Anami et al., 2020; Tran et al., 2019; Watchareeruetai et al., 2018). Several studies have also addressed the 

problem of DL-based crop stress localization in aerial images of natural fields taken under real conditions 

(Chiu et al., 2020; Zhang et al., 2019). The significance of our approach is in the design of a DL-based 

object detection model for potato crop stress identification in natural aerial images. Prior related DL 

research for potato crop assessment either focused on classification tasks using basic CNN architectures 

(Polder et al., 2019), tuber disease identification (Oppenheim et al., 2019), or single-leaf image 

classification (Pardede et al., 2018). The most similar work to ours was reported by Huang et al. (2020), 

which employs RetinaNet for detection of rice plants in a paddy field. However, the authors collected field 

images with a tractor-carried camera. Also, the comparison provided in the Results section in this paper 

indicates that our proposed Retina-UNet-Ag model outperformed RetinaNet (and the four other DL-models 

for object detection) on the potato stress detection task. 
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The main contributions of this paper are: (1) a novel DL model for detection of drought-stressed potato 

crop in natural aerial images at a plant level; and (2) an open dataset of 360 UAV images (and augmented 

dataset of 1,5000 images) of potato crop with labeled regions of healthy and stressed/diseased plants. 

 

MATERIALS AND METHODS 

Field and Induction of Stress  

The potato field used in this study was established at the University of Idaho - Aberdeen Research and 

Extension Center (Bingham County, Idaho). The geographical coordinates of latitude and longitude for the 

Aberdeen Research Center are 42.953°N and 112.827°W, respectively. The overall area of the used potato 

field is 4.3 acres (1.74 hectares) and was planted to potato cv. ‘Russet Burbank’ on May 14, 2018; potatoes 

were vine-killed on September 10 and harvested on October 5. Plots were overhead irrigated with 

sprinklers (1/8-in nozzles) spaced approximately 40 feet (12.2 m) apart, fertilized, and otherwise 

maintained according to recommended timing and amounts for southeast Idaho. However, plants along the 

first five rows along the western edge of the field experienced up to a 50% reduction in water inputs 

compared to the rest of the field, due to lack of additional irrigation sprinklers along the western field edge. 

The field was assessed for diseases and nutrient levels to ensure the stress observed was due to drought 

rather than other stress factors. Plants were assessed on August 13, 2018, when stressed plants due to 

insufficient water inputs were beginning to senesce prematurely.  

Aerial Images Collection  

For collecting aerial images of the field, we employed a small UAV Solo by 3DR, shown in Figure 1. 

Mounted to the drone is a multispectral camera Sequoia by Parrot (“Parrot SEQUOIA+,” 2017). The 

Sequoia camera weighs 72 grams, and it is specifically designed for use with small UAVs. It has four 

monochrome sensors with 1.2 MPx resolution (960×1,280 pixels) that acquire images at four wavelength 

bands of the electromagnetic spectrum: visible green (550 nanometers), visible red (660 nanometers), red-

edge (735 nanometers), and near-infrared (790 nanometers). The sensors capture and log the reflectance 

within an interval of 40 nanometers around the above-listed wavelengths. The device also has an integrated 

RGB camera with 16 MPx resolution (3,456×4,608 pixels). Sequoia includes a down-welling irradiance 

sensor (also referred to as sunshine sensor) that is shown attached to the top of the drone in Figure 1. The 

sensor measures the level of irradiance for each of the four wavelength bands. The measurements are used 

for radiometric correction of reflectance images taken under different illumination conditions. The camera 

has an integrated inertial measurement unit (IMU) and a magnetometer, as well as a global positioning 

system (GPS) unit, IMU, and magnetometer built into the irradiance sensor. 

 

 
Figure 1. A Solo UAV and a Sequoia camera used for collecting aerial images of the field. 

Sequoia camera 

Irradiance sensor 
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The images were acquired by flying the drone at an altitude of 3 meters (9.8 feet) above the ground at a 

slow speed of 0.5 m/s. This altitude allows capturing high-resolution images of crop plants, and 

subsequently, recognition of crop stress in the field at a plant level. The ground resolution of the images is 

0.08 cm for the RGB sensor, and 0.28 cm for the monochrome sensors. The footprint per image is 3.6×2.7 

m for the RGB sensor, and 3.8×2.8 m for the monochrome sensors. A time-lapse mode was used for 

capturing the images with a time interval set to 1.21 seconds.  

Dataset 

The dataset consists of labeled images containing a mix of healthy and stressed potato plants. The RGB 

sensor in Sequoia captured high-resolution images with 3,456×4,608 pixels size. Examples of the images 

are shown in Figure 2. From the collected set of high-resolution full-size RGB images, we extracted 

smaller image patches with 1,500×1,500 pixels size from different spatial locations by cropping and 

applying rotations of 45, 90, and 135 degrees. This step resulted in a set of 360 image patches, each 

containing several rows of healthy and stressed potato plants. The full-size images acquired with the four 

narrow-band multispectral sensors of Sequoia have a resolution of 960×1,280 pixels. The images taken by 

the monochrome sensors were first undistorted and aligned in a pre-processing step, to account for the 

different locations of the sensors on the device. Next, image patches with a size of 416×416 pixels were 

extracted for each of the four spectral bands.  

 

  
Figure 2. High-resolution field images with healthy and stressed plants. The stressed plants are located 

in the upper–half segment in the left image, and right–half segment in the right image. 

 

Besides applying translation and rotation for the extraction of image patches, we explored additional 

techniques to further increase the size of the training dataset, generally referred to as data augmentation. To 

this end, we applied the following four common methods for data augmentation: rescaling the pixels’ 

intensity in original images (minimum percentile value = 0.2, and maximum percentile value = 99.8), 

adjusting the gamma value of image brightness (gamma value = 0.8, and gain value = 0.8), adjusting the 

sigmoid value of image contrast (cutoff value = 0.5, gain value = 10), and applying a small amount of 

random noise (Gaussian distribution with mean = 0 and standard distribution = 0.1). Data augmentation 

was applied to 300 images, resulting in an augmented training set of 1,500 images.  The remaining 60 

images were used for testing. Data augmentation was not applied to the test images, as well as the image 

patches in the test set were independent from the training set (i.e., they were extracted from different 

images).  

Training object detection models requires labels with regions demarcating the objects of interest in 

images. For the potato crop dataset, the objects of interest are areas with healthy and stressed plants in 

images. Healthy and stressed plants were differentiated visually by color, with stressed plants exhibiting a 
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yellower color compared to the healthy green plants. We used the open-source graphical annotation 

software LabelImg (Tzutalin, 2019) to manually annotate the regions containing healthy and unhealthy 

crop with rectangular bounding boxes. The output coordinates of the bounding boxes and the class labels 

were saved as XML files, and were used for generating the ground truth for model training. 

The dataset is posted for open public access, and can be accessed from the following website1. 

Deep Learning Method for Object Detection 

The proposed Retina-UNet-Ag model is a variant of the Retina-UNet architecture, which was initially 

proposed for object detection in medical images (Jaeger et al., 2018), and it integrates features that are 

characteristical for U-Net (Ronneberger et al., 2015) into the RetinaNet (Lin et al., 2020) model for object 

objection.  

U-Net is a frequently used network for image segmentation. It employs an encoder—a contracting 

sequence of hidden layers (e.g., blue blocks in Figure 3) for learning semantic feature representations that 

gradually reduce the resolution of the feature maps, and a decoder—an expanding sequence of hidden 

layers (e.g., orange blocks in Figure 3) for reconstructing the feature maps to the initial size of images. A 

distinguishing design aspect of U-Net is the skip connections (e.g., the arrows between the blue and orange 

blocks in Figure 3) which enable transferring spatial information between the hidden layers in the 

expanding and contracting paths of the model. 

RetinaNet is a well-known network for object detection, where the output consists of a set of 

rectangular bounding boxes for the detected objects in the images (rather than an accurate delineation of 

object edges, as in segmentation tasks). RetinaNet belongs to the group of one-stage object detectors, and 

employs a convolutional Feature Pyramid Network (FPN) (Lin et al., 2017) for generating high-level 

feature representations that are suitable for detecting objects at multiple levels of abstraction. While object 

prediction based on high-level representations is advantageous in terms of positional invariance of objects 

(i.e., an object can be successfully detected regardless of being at different positions across the set of 

images), it results in loss of important low-level semantic information, which consequently impacts the 

final spatial accuracy of the generated bounding boxes.  

Motivated by the skip-connections in U-Net that transmit information from multiple encoding layers to 

multiple decoding layers (including layers with low-level feature representations, such as the layers in 

blocks C4 and C5 in Figure 3), Retina-UNet expands the FPN sub-network in RetinaNet by adding 

connections from the early high-resolution stages of the feature extractor from the encoding path (block 

C2) to the decoding path, as shown in Figure 3. More specifically, for a bottom-up feature extractor sub-

network with stages C2, C3, C4, and C5, the top-down part of the FPN in the proposed model (orange 

blocks in Figure 3) is formed as: 

𝑃2 = 𝐶𝑜𝑛𝑣(𝑃3𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑 + 𝐶𝑜𝑛𝑣(𝐶2)) (1) 

𝑃3 = 𝐶𝑜𝑛𝑣(𝑃4𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑 + 𝐶𝑜𝑛𝑣(𝐶3)) (2) 

𝑃4 = 𝐶𝑜𝑛𝑣(𝑃5𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑 + 𝐶𝑜𝑛𝑣(𝐶4)) (3) 

𝑃5 = 𝐶𝑜𝑛𝑣(𝑃6𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑 + 𝐶𝑜𝑛𝑣(𝐶5)) (4) 

𝑃6 = 𝐶𝑜𝑛𝑣(𝐶5, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2) (5) 

 

where Conv denotes a convolutional block layer, and the + sign signifies merging two layers by element-

wise addition (e.g., the output of P3 of size 168×168×256 is merged via element-wise addition with the 

                                                           
1 https://www.webpages.uidaho.edu/vakanski/Multispectral_Images_Dataset.html 

https://www.webpages.uidaho.edu/vakanski/Multispectral_Images_Dataset.html
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output of C2 of the same size). On the other hand, RetinaNet employs coarse feature representations from 

layers P3 and above to the sub-networks for object classification and localization. Similarly, Retina-UNet 

architecture adds another low-level feature representation layer P1 and another high-level layer P7 to the 

FPN. For the considered crop stress identification problem, we proposed Retina-UNet-Ag to use a pyramid 

with top-down layers P2 to P6, since there are no extremely small or large objects in comparison to the 

image size. Based on empirical validation, we have observed that the addition of layers P1 and P7 does not 

improve the performance of the model. 

The architecture of Retina-UNet-Ag is shown in Figure 3. A ResNet-50 base model (He et al., 2016) is 

used for feature extraction, with input images rescaled to a size of 672×672 pixels (i.e., we selected image 

size dimensions that are multiples of 32). The number of the feature maps in the decoding path is 256. For 

detecting objects of different sizes and different width-to-height ratios, the proposed model uses anchors of 

sizes 16, 32, 64, 128, and 256 pixels, and ratios of 0.5, 1, and 2. The model parameters are learned by 

minimizing a loss function that encompasses terms for reducing the errors in class label classification and 

bounding box localization.  

 
Figure 3. Retina-UNet-Ag architecture. C2 to C5 blocks output feature maps from stages 2 to 5 of the 

base model ResNet-50. P2 to P6 are the decoding block layers of the feature pyramid network, whose 

outputs are used for classification and bounding box regression. 

 

Performance Metrics  

For training and evaluation of the object detection task, we used the following metrics: Dice score 

coefficient (DSC), Intersection over Union (IoU), precision, and recall. Dice score coefficient and 

Intersection over Union measure the level of overlap between the ground truth for the objects of interest 

and the predictions by the model via the ratios defined respectively as 𝐷𝑆𝐶 =
2∙𝑇𝑃

2∙𝑇𝑃+𝐹𝑃+𝐹𝑁
 and 𝐼𝑜𝑈 =

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
. TP denotes the true positives, i.e., the set of pixels in an image that are correctly identified by the 

model as belonging to the positive class (either healthy or stressed plants), in accordance with the ground 

truth labels. FP denotes the false positives, i.e., the set of pixels in an image that are incorrectly predicted 

by the model to belong to the positive class. FN denotes the false negatives, i.e., the set of pixels in an 

image that are incorrectly predicted by the model to belong to the negative class. Precision calculates the 

percentage of the pixels in an image that are correctly predicted by the model as belonging to the positive 

class out of all the predicted pixels by the model, that is, Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
. Recall (also known as 

sensitivity) expresses the percentage of the pixels in an image that are correctly predicted by the model as 
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belonging to the positive class out of all relevant pixels that belong to the positive class according to the 

ground truth, i.e., Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
.  

Although in most related works for object detection (Abade et al., 2020; Nagaraju and Chawla, 2020) 

the employed metrics—such as mean Average Precision (mAP)—are calculated based on the number of 

correctly predicted bounding boxes for the objects of interest, here we use metrics that are calculated based 

on correctly predicted pixels in crop images for healthy and stressed plants. The reason for such choice of 

metrics stems from the difficulty in distinguishing potato plants as single objects when the canopy is 

closed. In such images, a larger region with a single bounding box can contain several healthy plants, and it 

represents one object. An additional explanation of this, supported by examples, is provided in the next 

section. 

Training Parameters 

We used the open libraries TensorFlow and Keras for the implementation of the DL model. The used 

hardware included both a desktop computer with a Titan XP NVIDIA GPU and the Google Colaboratory 

cloud computing services (offering Tesla K80 GPU). For model training, Adam optimization with a 

learning rate of 0.001 was used. We selected a batch size of 4 images, and a maximum number of regions 

of interest per image of 100. The number of training epochs was set to 15 with 500 steps per epoch, where a 

ResNet-50 base model was initialized with the pre-trained weights on the Common Objects in Context 

(COCO) dataset (Lin et al., 2014). All layers were available for parameter learning. For evaluation of the 

model performance, the bounding boxes with confidence scores greater than 0.7 were retained. Non-

maximum suppression was applied to eliminate the bounding boxes that have an overlap greater than 30% 

and a lower confidence score than the neighboring bounding boxes.  

 

RESULTS AND DISCUSSION 

Samples of images from the test set are displayed in Figure 4. The left column in Figure 4 shows four 

original RGB image patches collected from the field using the Sequoia camera. Manually labeled areas of 

healthy and drought-stressed stressed plants forming the ground truth are shown in the middle column in 

Figure 4. Labeled image boxes with blue edge color indicate healthy crop, and boxes with yellow edge 

color indicate stressed crop. In the right-hand column in Figure 4, the predicted bounding boxes by Retina-

UNet-Ag are shown superimposed over the corresponding RGB images. For each bounding box, the 

caption in the upper left-hand corner indicates the predicted class and level of confidence. Overall, the 

model predicted correctly the healthy and stressed plants in almost all images.  
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 (a) (b) (c) 

Figure 4. (a) Left column: original RGB images from the test set; (b) Middle column: ground truth; (c) 

Right column: Retina-UNet-Ag predictions showing the object class and level of confidence. 

 

As noticed earlier in the text, the canopy of potato plants in the field closes toward the end of the 

growing season. Hence, unlike the typical objects in general object detection tasks (e.g., cars, people), the 

potato plants in natural field images do not have obvious boundaries to create distinct objects in the images. 

During the labeling of healthy and stressed crop, regions of interest demarcated with a bounding box can 

overlap and include several adjacent plants, as shown in the images in Figure 4. Some plants can even have 
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a mix of healthy leaves and stressed leaves, because diseases and other stressors do not necessarily affect a 

whole plant uniformly. This makes labeling the collected images, and subsequently, the object detection 

and classification by the model, considerably challenging.  

Models Comparison 

The performance of Retina-UNet-Ag was compared to four state-of-the-art models that are commonly used 

for benchmarking DL architectures for object detection in general-purpose images and agricultural images 

(HamidiSepehr et al., 2019; Nagaraju and Chawla, 2020). The methods include Mask Region-based 

Convolutional NN (Mask R-CNN) with a ResNet-101 base model, RetinaNet with ResNet-50 base model, 

Faster Region-based Convolutional NN (Faster R-CNN) with Inception-v2 base model, and You Only 

Look Once (YOLO) v3 with ResNet-50 base model. All base models were pre-trained on the COCO 

dataset. The values of the performance metrics—Dice score coefficient, IoU, Precision, and Recall—

calculated on the dataset of RGB images are tabulated in Table 1. Retina-UNet-Ag achieved the highest 

values for both the healthy and stressed classes on almost all metrics. The average Dice score coefficient 

calculated from the values for the healthy and stressed crop amounted to 0.74. One should note that 

Precision and Recall are meaningful only in combination (i.e., a high value of the Precision or Recall alone 

does not translate into a good performance). 

 

Table 1. Performance metrics values for the object detection models on the test set of RGB images. 

Model 
Healthy Stressed 

DSC IOU Precision Recall DSC IOU Precision Recall 

Retina-UNet-Ag (ours) 0.723 0.574 0.659 0.832 0.756 0.604 0.702 0.841 

Mask R-CNN 0.717 0.556 0.644 0.769 0.748 0.598 0.700 0.809 

RetinaNet 0.709 0.537 0.578 0.899 0.732 0.583 0.698 0.795 

Faster R-CNN  0.692 0.563 0.630 0.891 0.665 0.554 0.781 0.654 

Yolo v3 0.635 0.487 0.541 0.855 0.550 0.394 0.407 0.882 

 

Next, the performance of Retina-UNet-Ag was evaluated on images captured with the monochrome 

sensors of Sequoia. The results are presented in Table 2. The evaluated images have three channels, and 

were created as a combination of the red (R), green (G), red-edge (RE), and near-infrared (NIR) spectral 

bands. The highest values for the metrics were achieved on the R-G-NIR images. Notably, the performance 

of the DL model for detecting healthy and stressed plants is reduced in comparison to the performance on 

RGB images from Table 1. As explained in the Materials section, the resolution of the four monochrome 

sensors of 960×1,280 pixels is significantly lower than the resolution of the RGB sensor of 3,456×4,608 

pixels. A possible explanation for the decreased performance on the sets of spectral images is due to the 

lower resolution in connection with the altitude at which the imagery was collected. Namely, at 3 meters 

above the ground, the high-resolution RGB sensor captured fine details of the plants, which were conducive 

to distinguishing healthy from stressed leaves. More common scenarios where the use of spectral 

reflectance data is beneficial entail crop analysis at a field level with images taken at a height of 30 to 100 

meters above the ground.   

As a part of future work, we will expand the dataset with newly collected images. Additionally, our 

present work does not handle the type of stress or disease in the crop. Our future goal is to include classes 

of different stressors, and to train the model to not only identify the stressed regions, but also to identify the 

type of stress in the crop (e.g., distinguishing among drought, fusarium seed piece decay, and rhizoctonia 

canker). 
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Table 2. Comparison of the performance by Retina-UNet-Ag on monochrome images. 

Model 
Healthy Stressed 

DSC IOU Precision Recall DSC IOU Precision Recall 

R-G-NIR 0.536 0.381 0.497 0.677 0.588 0.419 0.488 0.752 

R-NIR-RE 0.529 0.384 0.466 0.669 0.582 0.416 0.480 0.771 

R-G-RE 0.528 0.380 0.481 0.698 0.556 0.398 0.462 0.763 

CONCLUSION 

The presented work introduces a method for detection and localization of drought-stressed regions in aerial 

images of Russet Burbank potato crop. The images were collected with a Sequoia camera airborne by a 

UAV flying at a low altitude of three meters above the ground. The approach employs a novel deep NN 

model for object detection called Retina-UNet-Ag, via introducing low-level semantically dense feature 

representations into the feature pyramid network of Retina-UNet. The experimental results confirm that the 

used approach is able to correctly identify the presence of stressed plants in almost all instances in the 

images. In addition, the paper introduces a dataset of aerial RGB and multispectral images with labeled 

regions of healthy and stressed potato crop. The dataset is posted for open access to the interested 

community. 
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