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Abstract: Additive Manufacturing (AM) is a transformative manufacturing technology enabling
direct fabrication of complex parts layer-by-layer from 3D modeling data. Among AM applications,
the fabrication of Functionally Graded Materials (FGMs) has significant importance due to the
potential to enhance component performance across several industries. FGMs are manufactured with
a gradient composition transition between dissimilar materials, enabling the design of new materials
with location-dependent mechanical and physical properties. This study presents a comprehensive
review of published literature pertaining to the implementation of Machine Learning (ML) techniques
in AM, with an emphasis on ML-based methods for optimizing FGMs fabrication processes. Through
an extensive survey of the literature, this review article explores the role of ML in addressing the
inherent challenges in FGMs fabrication and encompasses parameter optimization, defect detection,
and real-time monitoring. The article also provides a discussion of future research directions and
challenges in employing ML-based methods in the AM fabrication of FGMs.

Keywords: functionally graded materials; machine learning; additive manufacturing; directed
energy deposition

1. Introduction

Additive Manufacturing (AM) refers to a collection of manufacturing processes where
materials are directly joined to manufacture freeform parts layer-by-layer from a 3D
computer-aided design model [1–6]. This technology has revolutionized the manufac-
turing of complex parts by enabling direct material printing and offers several advantages,
such as cost-effectiveness, manufacturing waste reduction, and opening new possibilities
for manufacturing automation. AM also enables mass part customization and eliminates
the need for hard-tooling of machining setups, making it suitable for on-demand manu-
facturing, thus mitigating supply chain challenges [2–4]. Nevertheless, AM also presents
certain challenges. These encompass a lack of inherent repeatability and a shortage of
widespread design knowledge and tools [3,7,8]. Also, another challenge in the acceptance
of AM components is the lack of a streamlined process qualification methodology [8].
Additionally, the quality of AM-produced parts can be lower in comparison to conventional
manufacturing methods since defects negatively influence the structural integrity of the
parts, due to the complex physics of AM processes [9,10].

To fully leverage the benefits of AM, design, processing, and production have be-
come more complex in recent years. Accordingly, these complexities require significant
knowledge for the selection and optimization of the AM process parameters. Consequently,
although crucial for achieving high-quality products and minimizing material and time
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losses, the selection of process parameters can be time-consuming and expensive. Moreover,
compositional inconsistencies in AM components arise due to complex physics and the
need for knowledge-supported practices to avoid defects [10–12].

One group of materials for which AM holds great potential for enhancing component
properties is Functionally Graded Materials (FGMs). FGMs are advanced composite mate-
rials that are manufactured with a gradient composition transition between dissimilar ma-
terials, resulting in location-dependent mechanical and physical material properties [13,14].
The composition gradient in FGMs enables enhancing the material properties by combining
the advantages of different materials in a single component. Such material composition
differs from traditional composite materials, which are characterized by a sharp interface
between the matrix and reinforcement material. Additionally, the gradient transition be-
tween dissimilar materials in FGMs provides for location-wise properties and improved
overall performance, making them desirable for the aerospace, automobile, biomedical,
and defense industries [15,16]. Examples of FGMs include Stainless Steel 316/Inconel
718 [16] and Copper/Tungsten [17] FGMs for structural steels, Nickel/Aluminum Oxide
FGM [18] for aerospace applications, Yttria-Stabilized Zirconia/Nickel-based superalloy
FGM [19] for thermal barrier coatings, and Cobalt/Chromium [15] and Carbon Fiber
Polymer Matrix/Yttria-Stabilized Zirconia [20] FGMs for biomedical applications.

Among the various AM methods for FGMs, Directed Energy Deposition (DED) holds
an important place in the fabrication of metallic FGMs and finds extensive application in
various industries for the fabrication of high-degree precision components with advanced
properties [11]. Furthermore, Laser-assisted Directed Energy Deposition (LDED) has
been increasingly utilized as an advanced technique for fabricating FGMs where the
processing parameters have substantial influence over microstructure and mechanical
properties [16,21].

To address the stated challenges in AM, Machine Learning (ML) techniques have
emerged as a promising means for optimizing processing parameters, improving product
quality, and detecting manufacturing defects [22]. ML techniques also offer a potential
solution to challenges related to material design and development, whereas by establishing
the complex relationships between composition, microstructure, process, and performance,
these techniques enable the discovery of new materials with tunable and improved proper-
ties [23]. Notably, traditional topology optimization methods have been augmented by deep
learning-based approaches, particularly in the optimization of composite structures [24].
Also, ML techniques involving in situ monitoring have contributed to real-time defect
detection, microstructure classification, and property prediction [5,25–27].

Although multiple related literature review articles have covered various aspects of
the implementation of ML methods in AM [22–25], to the best of our knowledge, this is
the first survey that focuses on ML methods for the fabrication of FGMs. Considering
the increased interest in FGMs applications and their potential for enhanced functionality
across tasks and industries, this review article can benefit the interested community.

The paper is organized as follows: In Section 2, we provide a brief overview of studies
related to FGMs fabrication, followed by a review of works on employing ML in AM under
Section 3, and a brief overview of ML methods in Section 4. Section 5 is the main section of
the article, and it presents published studies from the literature related to the application of
ML techniques for FGMs fabrication. Next, we discuss future directions and challenges in
the application of ML for FGMs fabrication, and the last section concludes the paper.

2. Additive Manufacturing for FGMs Fabrication

Directed energy deposition (DED) is a category of AM processes in which a feedstock
material in the form of powder or wire is delivered to a substrate on which an energy source
such as a laser beam, electron beam, or plasma/electric arc is simultaneously focused. The
melted powder forms a melt pool and results in continuously depositing material layer by
layer. DED has several unique advantages compared to other AM processes, such as site-
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specific deposition, alloy design, and three-dimensional printing of complex shapes [28,29].
Figure 1 presents a schematic of the DED process of FGMs [30].
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Laser-assisted DED (LDED) is an advanced AM technology for fabricating FGMs,
characterized by differences in properties as the dimension varies. The overall proper-
ties of FGMs are unique and different from any of the individual materials that form
them. A schematic illustration of the three key aspects of the formation of FGMs from
Mahmoud et al. [31] is shown in Figure 2.
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(a) composition variation, (b) porosity distribution, and (c) microstructural characteristics [31].

A DED system equipped with multiple powder feeders and nozzles can create FGMs
by varying the powder flow rate from each feeder [32]. In the DED process, the microstruc-
ture and mechanical properties of the parts can be largely affected by the processing
parameters. The processing parameters also affect the deposition efficiency and mechanical
properties of deposits [33]. Zhang et al. [21] introduced a DED fabrication process where a
Cobalt-based alloy W50 was deposited on an H13 steel substrate. Since DED parameters
have significant effects on part characteristics, the processing parameters were optimized
and used to fabricate samples for mechanical tests. Experimental results showed that
tensile test samples had low residual stress, confirming that by optimizing DED processing
parameters, a significant reduction in residual stresses can be realized in W50 coatings.
Consequently, the authors were able to achieve crack-free W50 coatings by optimizing DED
parameters without substrate pre-heating.

Another rapidly expanding area of research in AM is the utilization of location-
dependent composition control for creating FGMs [34]. For instance, direct joining of
copper and stainless steel (SS) is prone to cracking due to the very limited solubility
between Cu and Fe [35]. Zhang et al. [36] presented an innovative approach for the
fabrication of defect-free and crack-free FGMs using AM by introducing interlayers. The
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authors utilized a DED technique that involved controlled deposition of material through
a focused energy source along with interlayers between SS and Cu material to improve
bonding and mitigate the mismatch between their thermal and mechanical properties in
achieving desirable residual stress.

Li et al. [16] developed a physics-modeling approach to simulate the fabrication of
FGMs using DED. The main objective was to predict the thermal distribution, material
composition, and molten pool dynamics of FGMs. The authors validated the developed
models for FGMs comprising Stainless Steel 316L (SS316L) and Inconel 718 (IN718) parts
with a thin-wall structure. The proposed methodology involved multi-physics and multi-
material modeling, considering heat transfer, fluid flow, and material interactions. The
models employ conservation equations for momentum, energy, and mass and incorporate
the material properties and composition ratios of SS316L and IN718 through a mixed-
material model with volume fractions. The model simulated the DED process with different
processing parameters while accounting for composition changes. Experimental validation
encompassed fabricating SS316L/IN718 FGMs with a thin-wall structure. The comparison
of simulated and experimental outcomes demonstrated the model’s ability to estimate
material composition ratios and geometry in FGMs.

In another work, Li et al. [37] investigated the microstructural evolution, grain growth,
and precipitation behaviors in FGMs with varying compositions of IN718 and SS316.
Optical microscopy (OM) and electron backscatter diffraction (EBSD) were employed for
microstructural characterization. OM employs visible light and a system of lenses to
provide an overview of the material microstructure, including the grain size, morphology,
and distribution of phases. EBSD is a scanning electron microscopy (SEM) technique that
uses the diffraction pattern of backscattered electrons from a focused electron beam to
determine the detailed maps of crystal orientation and phase information within a material.
EBSD provides information at a much higher resolution in comparison to OM. In the study
by Li et al. [37], the OM observations revealed a transition from columnar to equiaxial
grain shapes as the weight percent of IN718 in the FGM parts increased. This behavior
was consistent with the EBSD mapping, which showed that the component with 75 wt%
IN718 has the finest grain size, attributed to the effect of heat capacity on solidification and
grain growth. The authors were able to fabricate FGMs from SS316 to Inconel 718 using
powder-based LDED exhibiting a gradient microstructure without defects or distortion.

3. Machine Learning Methods in Additive Manufacturing

Over the last two decades, the design, processing, and production of AM parts have
become more complex. Consequently, optimizing the AM process parameters has become
more time-consuming and costly. As a result, ML methods have been increasingly applied
in AM to reduce human effort and time [22]. ML-based tasks in AM encompass research
for part design (e.g., to accelerate topology optimization and provide greater complexity in
constraints or generate lattice structures based on mechanical properties), process parameter
optimization and process monitoring, and the development of tools for general production
planning [22]. ML models have also been developed to identify the manufacturability of
components and dimensional deviations in AM parts [22].

In a recent survey of ML methods for material design of steel materials, Pan et al. [23]
divided ML algorithms in materials science into four general categories: classification,
clustering, regression, and probability estimation. For material property prediction and
microstructure identification, ML algorithms that employ classification, regression, and
clustering proved more beneficial, whereas probability estimation algorithms are more
common in materials development. Also, Bayesian algorithms, genetic algorithms, and
decision tree algorithms were used in prior works for optimizing process parameters. The
authors emphasized the potential that ML offers for overcoming the complex physical
mechanisms in materials and for the development of advanced steels [23].

Another survey paper on the use of ML in AM was recently published by Ciccone
et al. [24]. The researchers selected 48 papers from the comprehensive collection of works



Materials 2024, 17, 3673 5 of 21

and provided a systematic literature review to assess the potential of AI applications in
optimizing AM processes and techniques. The review covers research for augmenting AI
models with additional data to improve accuracy, implementing real-time solutions for
quality control, integrating additional process parameters for more precise predictions, and
creating comprehensive optimization approaches that combine multiple AI methods. Other
reviewed topics include standardizing data reporting to address data scarcity, using AI
in the design process for complex structures, predicting the structural strength of printed
components, assessing material performance through microstructure analysis, optimizing
tool paths for efficiency, and monitoring and controlling AM processes in real time.

Fu et al. [25] conducted a review of ML algorithms for defect detection in Laser-Based
Additive Manufacturing (LBAM). The ML algorithms were applied to different types of
image data to enhance the efficiency of the printing process. The authors considered
several types of defects, such as porosity, which is a common issue in LBAM that affects
product density. Incomplete fusion holes occur due to insufficient energy input during
the LBAM process, whereas cracks can result from high laser energy input leading to high
temperature gradients and potential crack initiation during or after solidification. Various
types of data have been used for defect detection and classification, including Melt Pool
Thermal (MPT) data, Acoustic Signals (AE), optical/layer-wise images, photodetector data,
powder bed images, and MWIR images. The authors reviewed 48 papers with different
case scenarios, including varying material properties, fabrication methods, and defects.
The most common method for supervised learning is Convolutional Neural Networks,
whereas popular unsupervised learning methods include k-Nearest Neighbors, Deep Belief
Networks, and Self Organized Maps algorithms. Reinforcement learning-based approaches
have also been explored for efficient fault detection models. The article also discusses the
importance of selecting suitable ML algorithms based on printing technologies, materials,
and defect types.

4. Overview of Machine Learning Methods

ML is a subfield of Artificial Intelligence that focuses on developing algorithms that
learn from data and make predictions on unseen data. ML algorithms are, in general,
categorized into supervised and unsupervised learning algorithms. Supervised learning
entails the application of an algorithm for processing a dataset consisting of training samples
and labels. Generally, the labels can be discrete, such as indicating class membership (e.g.,
presence or absence of a detrimental phase in an FGM), or continuous values (e.g., the
level of porosity of an FGM). Unsupervised learning algorithms are developed to extract
knowledge or insights about a dataset of training samples without labels and often focus
on identifying patterns or similarities in the training samples.

The following section provides a brief overview of common ML algorithms and
methods. For a detailed description, the reader can refer to the following works [38,39].

4.1. Unsupervised Learning Algorithms

Unsupervised learning comprises ML algorithms that learn from unlabeled datasets
and involves tasks such as dimensionality reduction, clustering, and density estimation.
Dimensionality reduction refers to reducing the number of input features in a dataset, and
it is often applied when dealing with training samples with a large number of features.
Common ML methods for dimensionality reduction include Principal Component Analysis
(PCA) [40], Linear Discriminant Analysis (LDA) [41], and t-distributed Stochastic Neighbor
Embedding (t-SNE) [42]. In addition, ANNs-based techniques have also been employed
for dimensionality reduction. Clustering is used to group the training samples of a dataset
into clusters based on the similarity of their features. Popular clustering methods include
K-Means clustering [43], Mean Shift clustering [44], Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [45], and Hierarchical Clustering [46]. Density
Estimation entails estimating the probability density function of the features for the training
samples in order to understand the distribution of the dataset. ML methods for density
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estimation include Gaussian Mixture Models (GMMs) [47], Kernel Density Estimation
(KDE) [48], and Probabilistic Graphical Models (PGMs) [49].

Unsupervised learning algorithms are less commonly used in the fabrication of FGMs
in comparison to supervised learning algorithms. However, several related works employ
dimensionality reduction for feature selection as a preprocessing step before applying a
supervised learning algorithm.

4.2. Supervised Learning Algorithms

Supervised learning algorithms are often divided into two main categories, clas-
sification and regression, based on whether the data labels are discrete or continuous.
Classification algorithms employ discrete labels, and the objective typically is to classify the
training samples into two or multiple classes. Regression algorithms use continuous labels,
and the objective is to predict the value of a target variable for a given training sample.

Classification algorithms can be further categorized into several subgroups based on
the working principles upon which they predict class membership. Numerical classifier ML
algorithms are designed to approximate a mapping function between the input samples and
the labels by optimizing an objective function. ML methods in this subgroup include Lo-
gistic Regression (LR) [50], Linear Classifier (LC) [51], Perceptron Algorithm [52], Support
Vector Machines (SVM) [53], and Artificial Neural Networks (ANNs) [39]. Probabilistic ML
algorithms employ parametric probability distributions to model the mapping between the
training samples and the labels and include Naïve Bayes (NB) [54], Gaussian Discriminant
Analysis (GDA) [38], Hidden Markov Models (HMMs) [55], and Probabilistic Graphical
Models (PGMs) [38]. Instance-based non-parametric algorithms perform the learning
task by employing the individual data instances directly without deriving model parame-
ters. An example of an instance-based algorithm for classification is k-Nearest Neighbors
(kNNs) [56], and in addition, several regression algorithms have been developed based
on the instance-based approach. Symbolic ML algorithms employ high-level symbolic
representation of the training samples and perform the learning task based on logic and
search via manipulation of symbols. Representative symbolic methods include Decision
Trees (DT) [57] and Classification And Regression Trees (CARTs) [58]. Lastly, ensemble
learning algorithms perform classification by aggregating the predictions by a collection
of base learning algorithms. Commonly used ensemble methods include Random Forest
(RF) [59], Gradient Boosting (GB) [60], Extreme Gradient Boosting (XGBoost) [61], and
Bagging Ensemble (BA) [62].

Regression algorithms in ML can also be categorized into similar subgroups as clas-
sification algorithms, and some methods can be used both for classification and regres-
sion learning tasks. Numerical regression methods based on optimizing an objective
function include Linear Regression (LiR) [63], Polynomial Regression (PR) [63], Support
Vector Regression (SVR) [64], and Artificial Neural Networks (ANNs). Instance-based
non-parametric algorithms, including Kernel Regression (KL) [65] and Local Regression
(LoR) [66]. Symbolic ML algorithms include Decision Tree Regression (DTR), as well as
most ensemble methods, such as Random Forest (RF) [59], Gradient Boosting (GB) [60],
and Extreme Gradient Boosting (XGBoost) [61], can be employed for regression tasks.

4.3. Artificial Neural Networks

Artificial Neural Networks (ANNs) belong to the group of numerical optimization
approaches where the learning task is accomplished by minimizing an objective function
between the training samples and target variables. ANNs use layers of computational units
called neurons to learn the mapping function. The neurons process the values received
from the preceding layer, apply an activation function, and pass the outputs to the next
layer in the network. The parameters of the network are learned during the training phase,
which includes forward propagating the input features through the network followed by
backward propagating the predicted values in order to minimize the objective function.
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Common objective functions with ANNs are Cross-Entropy for classification tasks and
Mean-Squared Error for regression tasks.

ANNs with more than three layers are referred to as Deep NNs (DNNs), where the
depth of the network refers to the number of hidden layers. Recent ANNs typically com-
prise several tens or hundreds of hidden layers containing millions or billions of learned
parameters. A variety of different architectures of ANNs have been developed and applied
to different tasks. Common architectures include Fully-Connected NNs (FCNNs), com-
monly referred to as Multi-Layer Perceptrons (MLPs) [39], Convolutional NNs (CNNs) [67],
Recurrent NNs (RNNs) [68], Transformer NNs (TNNs) [69], Probabilistic Diffusion NNs
(PDNN) [70], Graph NNs (GNNs) [71], and Generative Adversarial Networks (GANs) [72].

4.4. Reinforcement Learning

Reinforcement Learning (RL) [73] is another branch of machine learning that is based
on maximizing a reward function calculated via interaction with an environment. Unlike
supervised and unsupervised learning, RL relies on trial and error to discover the optimal
actions that maximize the rewards. The learning process is guided by a policy, which
defines the strategy for selecting actions based on the current state. An important element
of RL is achieving a balance between exploration and exploitation, where exploration refers
to trying new actions that can potentially lead to higher rewards, and exploitation involves
selecting past actions that maximize the rewards.

One of the most commonly used RL algorithms is Q-learning [74]. It is a value-based
approach where a value function is iteratively learned to estimate the cumulative reward
of taking an action while being in a specific state. Deep Q-Network (DQN) [75] is a variant
of Q-learning that employs Deep NNs for approximating the value function, making it
particularly suited for complex environments with high-dimensional inputs. Other popular
RL algorithms are Policy Gradient (PG) methods [76] that directly optimize the policy by
calculating gradients with respect to the policy parameters. Proximal Policy Optimization
(PPO) [77] is an example of a PG method that constrains the updates of the policy to prevent
sudden changes to the policy. Actor-Critic RL algorithms [78] combine value-based and
Policy Gradient methods by employing a value function, i.e., critic, to evaluate the actions
of the policy, i.e., actor.

A graphical overview of common ML methods [79] is provided in Figure 3.
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on a threshold value; (b) k-Nearest Neighbors—the class for a new sample (the star in the figure) is
predicted based on the class labels of the k closest samples; (c) Support Vector Machines—identifies
a dividing hyperplane that separates the blue and red samples in the figure by finding the max-
imum margin between the hyperplane and the samples; (d) Decision Tree—classifies samples by
asking a series of questions and splitting the data at each node based on selected threshold values;
(e) Random Forest—aggregates the predictions by many Decision Trees to obtain a more robust
model; (f) Artificial Neural Network—uses hidden layers to learn a mapping function between the
training samples (inputs) and the target variables (outputs).

5. Machine Learning Methods for FGMs Fabrication
5.1. Parameters Optimization and Prediction of Material Properties

Kim et al. [80] explored the design optimization of FGM composite structures in
comparison to traditional fiber-reinforced composites and introduced a new framework
using the representative volume element (RVE) method and ML for the simultaneous design
of topology and fiber layout in FGMs. An Artificial Neural Network (ANN) was used
to predict the effective material properties based on given design variables. The model
was trained using data generated from RVE simulations, enabling quick and accurate
predictions of material properties for different configurations. This approach accelerated
the optimization process, making it computationally efficient. Additionally, constraints
were imposed on the composite volume fraction and the fiber material volume fraction
to ensure the practicality of the design. The proposed methodology was validated using
examples with multi-load and 3D cases, and the results demonstrated that the optimized
FGM design outperformed the traditional fiber-reinforced composite design in terms of
structural compliance and stiffness.

Srinivasan et al. [81] developed an approach for coupling physics-based process model-
ing with ML to accelerate searching the AM processing space for suitable sets of processing
parameters in Laser Powder Bed Fusion (LPBF). The methodology involved simulating
thermal histories, reducing the dimensionality of thermal histories, and optimizing laser
scan parameters. The approach was validated with the Ti-6Al-4V alloy for the fabrication
of parts with simple and complex geometries. The objective was to enhance the mechanical
properties and performance of manufactured parts by minimizing thermal heterogeneity.
A calibrated thermal model was developed that accurately simulates the temperature
evolution during the LPBF process. The thermal model served as a tool for predicting the
thermal histories of fabricated components and understanding how processing parameters
influence the material properties. The model considers factors such as laser power, laser
velocity, and hatch spacing in the LPBF process. Principal Component Analysis (PCA)
was applied to reduce the dimensionality of the vectors to a lower-dimensional space.
Afterward, a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) was
utilized for modeling the variations in thermal histories. By optimizing scan parameters lo-
cally, the researchers achieved more uniform part processing and significantly reduced the
variation in thermal histories, which led to improved mechanical properties and enhanced
overall performance of the printed components, as well as reduced heterogeneity in LPBF.

Dharmadhikari et al. [8] proposed a model-free Q-learning Reinforcement Learning
algorithm for process parameter optimization of melt pool depth within the power-velocity
(P-V) domain of a candidate LDED process. The experiments were performed by varying
the power and velocity of the LDED system, and they were then used to generate a
process map of the melt pool depth. The results from the different P-V combinations in
the generated process map were used as a validation tool to verify the optimal solutions
returned by the algorithm. The experimental results proved the effectiveness of the model
in predicting optimal combinations of power and velocity.

To establish the relationship between the build height and density of DED samples
and fabricate defect-free and high-degree precision components, Narayana et al. [11]
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designed an ANN to optimize the processing parameters for DED. The ANN model was
beneficial in reducing the number of required experimental trials and thereby minimizing
material waste and fabrication time. To optimize the model parameters of DED, the laser
power, scan speed, powder feed rate, and layer thickness were considered inputs, and the
density and build height of the samples were the outputs of the model. To examine the
processing parameter influence, the authors used 3D plots (process maps) based on the
ANN predictions, displaying the relationship between feed rate and power and feed rate
with thickness for density and build height separately, highlighting the optimal regions
in each process map. To validate the ANN results, four new sets of experiments were
conducted by selecting various process parameters from the designed process map. The
results demonstrated that the model predictions for combinations of height and density
matched well with achieving the optimal region in the process maps.

Alcunte et al. [82] investigated the fatigue properties of fabricated Polylactic Acid
(PLA) and Thermoplastic Polyurethane (TPU) specimens under uniaxial loading. The
specimens were fabricated using Multi-Material Additive Manufacturing (MMAM), which
allows for customized variations in material characteristics such as mechanical strength,
thermal conductivity, and stiffness. A ZMorph single-nozzle dual-material 3D printer was
used to manufacture the multi-material structures. The study utilized multiple ML models,
including Random Forest (RF), Support Vector Machine (SVM) classifiers, and Artificial
Neural Network (ANN). The data for model training was obtained from experiments con-
ducted using a Testresources 810E4 load frame with a 15 KN load capacity. The experiments
showed that the RF model outperformed SVC and ANN in predicting fatigue cycles of
polymeric FGMs, achieving the lowest RMSE values on the test dataset.

Raturi et al. [83] studied the mechanical characteristics of porous FGMs, with a par-
ticular focus on an even distribution of porosity for FGM plates. An important area of
research in this context is free vibration analysis which examines the natural frequencies
of a material without external support. The FGM plate in the study was designed using
stainless steel SS304 alloy as the first material and silicon nitride (Si3N4) as the second
material. To evaluate the fundamental natural frequencies, a Finite Element Method (FEM)
was used with input parameters comprising elastic and shear moduli along the direction of
fibers, Poisson’s ratio, mass density, and thickness. The authors employed multiple ML
models, including Linear Regression (LR), Gaussian Process Regression (GPR), Artificial
Neural Network (ANN), and Support Vector Machine (SVM). The experimental validation
revealed that LR and GPR provided more accurate predictions when compared to SVM
and ANN.

Sulaiman et al. [84] investigated the efficiency of FGMs annular fins in heat transfer
applications, specifically for analyzing heat transfer and temperature distribution in heat
exchangers, electronic cooling systems, and power generation equipment. The main
purpose of adding an annular fin to an object is to increase the surface area in contact
with the surrounding fluid, enhancing convective heat transfer. With a growing demand
for fins, it is important to consider thermal parameters such as thermal conductivity,
emissivity, and heat transfer coefficient. An ANN model was employed, where a nonlinear
ordinary differential equation was used to simulate ring fin heat transfer and generate data.
The authors used 2001 individual data points and a loss function based on the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm to train the model. The analysis showed that
the thermo-geometric parameter significantly impacts local temperatures in annular fins,
with lower values resulting in faster conductive heat transfer and higher local temperatures
due to the inverse correlation with thermal conductivity.

Wasmer et al. [85] conducted a study to develop a system for real-time monitoring
of FGMs fabrication by an LDED process. The selected materials included Titanium
(due to its stable solid α and β phases and biocompatibility for medical applications)
and Niobium. The study produced parts ranging from pure Titanium to pure Niobium
with intermediate mixtures, listed as 100%Ti, 58%Ti42%Nb, 37%Ti63%Nb, and 100%Nb.
Real-time monitoring during the fabrication of FGMs samples is crucial for ensuring part
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quality and consistency, defect detection, and improving the efficiency of the AM process.
Commonly used sensors for real-time monitoring include vision cameras, thermal cameras,
optical sensors, and acoustic emission sensors. In this study, for real-time monitoring
of the AM process, the authors utilized three types of sensors that were installed on an
industrial LDED machine: a microphone, an optical emission spectroscopy (OES) sensor,
and a vision camera. The microphone captured the acoustic emission (AE) signals emitted
during the fabrication process, the OES sensor gathered optical spectra information, and the
vision camera captured images for monitoring the process zone dynamics. In addition, the
fabricated parts were analyzed post hoc using optical microscopy (OM), scanning electron
microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) to establish the ground
truth for evaluating the ML models. Whereas OM provides low-resolution morphological
information and phase identification, SEM provides high-resolution imaging with detailed
microstructure information down to nanometers. EDX is typically combined with SEM
and employs the emitted X-ray energies from the high-energy electrons for determining
the elemental composition, creating maps of elemental distribution across FGM samples,
and differentiating phases based on their elemental composition. Hence, EDX augmented
the information obtained by SEM with elemental and compositional analysis. The authors
implemented several ML models to classify the data collected online during the LDED
process, including Linear Discriminant Analysis (LDA), Logistic Regression (LR), Support
Vector Machine with Linear Kernel (LSVM), Support Vector Machine with RBF Kernel
(SVM), k-Nearest Neighbors (kNNs), Multi-Layer Perceptron (MLP), and Random Forest
(RF). The MLP model achieved the highest average accuracy of 96.38%. Further, training the
models with data collected with the OES sensor achieved high classification accuracy across
all ML models, indicating its potential for online monitoring of FGMs with varying process
regimes. The signals from the OES sensor effectively distinguished between different
chemical compositions, even when tilted at an extreme angle. The collected sensory data
was helpful for differentiating between various process regimes, such as conduction mode
and different types of lack of fusion pores, demonstrating its capability to detect details in
the AM process.

Table 1 summarizes the investigated works for process parameter optimization and
prediction of material properties in AM using ML.

Table 1. Investigated literature regarding the application of ML in process parameter optimization
and prediction of material properties in additive manufacturing.

Title Drawback ML Method Data
Available

Investigated
Materials

Predicted Parameters/
Properties

Kim et al. [80] N/A ANNs N/A N/A Elasticity, stiffness

Srinivasan et al. [81] Not suitable for complicated
geometries PCA, DBSCAN Yes Ti-6Al-4V Laser power, laser velocity,

hatch spacing

Dharmadhikari et al. [8]
Focus on optimizing

geometric tolerance and
limited space action

Q-learning Yes, upon request N/A Power and velocity

Narayana et al. [11] N/A ANN Yes Ti-6Al-4V Scan speed, powder feed rate,
and layer thickness

Alcunte et al. [82] We need to improve accuracy
across different stress levels RF, SVC, ANN Yes, upon request PLA, TPU Fatigue life

Raturi et al. [83] N/A LR, GPR, ANN,
and SVM Yes, upon request SUS304, Si3N4

Natural frequencies of porous
FGMs

Sulaiman et al. [84] Numerical methods
implementation ANN-BFGS Yes, upon request N/A Heat transfer and temperature

distribution of ring fins

Wasmer et al. [85] OES Challenges, Feature
Reduction Impact

LDA, LR, SVM,
kNN, MLP, RF Yes Titanium, Niobium Lack-of-fusion porosity,

real-time monitoring

5.2. Classification of Phases in Microstructure

Challenges that can cause the failure of FGM parts/components include mismatched
lattices, differences in thermal expansion coefficients, and difficulty in optimizing print-
ing parameters for multiple materials simultaneously. Eliseeva [86] introduced a novel
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computational design method for FGMs that plans the compositional gradients so that
detrimental phases are avoided. This method enables FGMs gradient paths to be planned
in high-dimensional spaces and optimized with respect to an objective function. The
method consists of two major steps. First, an ML technique is used to map regions in
phase diagrams comprising the multi-dimensional composition-temperature space that
may contain detrimental phases over a range of temperatures. This is followed by the
use of a path-planning algorithm adapted from robotics to devise a compositional gra-
dient path that optimizes a selected objective function. Regions of detrimental phases
identified during the first step are considered to be obstacles to be avoided during the
path planning step. This approach resulted in gradient pathways that are more robust to
manufacturing temperatures, cooling rates, or post-fabrication heat treatment. Gradient
samples were successfully fabricated using a multi-material DED process with optimized
processing parameters.

Galvan et al. [87] worked on determining thermodynamic conditions for a desired
phase state, where the goal was to find a generalized inverse phase stability solution for
material discovery. The paper investigated both Gradient-Improvement Particle Swarm
Optimization (GIPSP) and the Ensemble-Disjoint Set Discrimination (EDSD) algorithms,
which are designed to address the challenges of complex and multidimensional Constraint
Satisfaction Problems (CSPs) encountered in the domain of material design and tackle the
highly nonlinear and discontinuous search space of the generalized inverse phase stability
problem. The authors focused on optimizing material properties by identifying thermo-
dynamic conditions that satisfy specific phase state constraints in the Fe-Ti binary alloy
system. The results demonstrated that the GIPSP algorithm consistently outperformed the
EDSD algorithm in terms of precision and recall. The GIPSP algorithm exhibited better
accuracy in approximating the true constraint boundary, especially in cases where the satis-
factory region was small relative to the search space. The EDSD algorithm, however, had
significant difficulty approximating the solution in some cases, which might be attributed
to the limitations of the support vector data description technique used in EDSD.

Linearly graded composition in FGMs often leads to undesirable phases and cracking.
To address this problem, Kirk et al. [88] focused on designing and optimizing FGMs with
monotonic property profiles. To this end, the authors introduced a methodology that
enables efficient identification of optimal paths in the composition space of FGMs while
ensuring that these paths exhibit monotonic variations in thermal expansion. A novel
cost function was proposed that prioritizes paths with monotonic property variations and
integrates several metrics, including the lack of increase (LOI) and lack of decrease (LOD),
which were derived from the calculation of the positive and negative parts of the first
derivative of the property function over the composition space. The researchers used the
Rapidly-Exploring Random Tree with Final Node (RRT*FN) algorithm, a sampling-based
planner known for its efficiency in exploring high-dimensional spaces and constructing
paths between the initial and target compositions. The objective was to ensure that the
proposed algorithm finds paths that are both optimal in length and possess the desired
monotonic variations in thermal expansion. By carefully controlling the deposition rate and
adjusting constraints, the study demonstrated that paths with smooth property profiles can
be achieved, even in regions with steep changes in property values.

Table 2 summarizes the different investigated studies for avoiding detrimental phases
in AM using ML.

Table 2. Investigated literature regarding the application of ML in avoiding detrimental phases in
additive manufacturing.

Title Drawback ML Method Data Available Investigated Materials

Eliseeva et al. [86] N/A Path planning Cannot be shared SS316L, chromium, nickel (Fe-Ni-Cr)

Galvan et al. [87] Limited dimensionality GIPSP, EDSD Yes, ThermoCalc Fe-Ti binary alloy compositions

Kirk et al. [88] Inability to optimize multiple
properties simultaneously RRT*FN Yes, upon request Fe-Co-Cr system
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5.3. Detection of Defects

The quality of manufactured parts is a major issue in AM since defects negatively
influence the structural integrity of the parts and because of the complex physics involved
in the AM process. To address challenges in qualifying and certifying parts due to the
variability of the manufacturing process, Mojumder et al. [89] introduced an ML method
for predicting LOF (lack-of-fusion) porosity and understanding its relationship to the
processing conditions. Identifying the relationship between process parameters and LOF
porosity is a challenging problem due to the high dimensionality of the process design space
and the large number of simulations or experiments required to evaluate all processing
conditions [2,3]. To establish the relationship between processing conditions and LOF
porosity, the authors proposed an ANN architecture that employed symbolic regression
and predicted the LOF porosity using a physics-based thermo-fluid model. Specifically,
the porosity was predicted using the thermo-fluid model, and afterward, the predicted
porosity data for different processing conditions were used to show the efficacy of an
active learning framework to reduce the number of simulations for effectively mapping the
process design space. Finally, the samples from active learning were used to predict the
processing parameters and porosity relationship. The limitations of the proposed model
are that it does not consider multiphase or multi-species flow and assumes that materials
are fully melted when their temperature exceeds the melting point, leading to a simplified
mechanism of porosity formation. Furthermore, the material properties used in the research
were taken from the published literature and may vary considerably with temperature,
which was assumed to be constant.

Melt pool monitoring is often used to ensure the quality of AM parts. For instance, Ak-
bari et al. [9] developed an ANN-based method called MeltpoolNet that enables predicting
the geometry and defect type of the melt pool in DED. The data points were collected from
experiments using various alloys and processing parameters, and the model consists of a
regression and a classification branch. The regression branch predicts the depth, width, and
length of the melt pool, and the classification branch predicts the defect mode of the melt
pool. The researchers formulated a constrained optimization problem using dimensional
analysis and nonlinear regression to identify equations that relate the process parameters
to the melt pool depth, width, and length. Good agreement was identified with the approx-
imations derived from the theoretical Rosenthal equation. In this study, ANN, Gradient
Boosting, and Random Forest outperformed other ML models applied to this task.

Van Houtum et al. [90] proposed the Adaptive Weighted Uncertainty Sampling
(AWUS) method for predicting the quality of the melt pool in DED. AWUS is an ac-
tive learning strategy designed to balance random exploration and uncertainty-based
exploration using model change. The study also used in situ acquired imaging data to
differentiate between different quality levels based on the extraction of features from the
thermal images. The feature extraction combined gradient and intensity information, cap-
turing the melt-pool boundary’s visibility. The extracted features were used to train various
classification models, including Logistic Regression (LR), Support Vector Machines (SVM),
Random Forest (RF), and Naive Bayes (NB). The results demonstrated the effectiveness of
the proposed AWUS active learning strategy, which outperformed state-of-the-art meth-
ods by significantly reducing the annotations needed for training across diverse datasets,
classifiers, and batch sizes. Furthermore, the process quality classification method for DED
exhibited promising performance, achieving a median F1-macro score of over 90% across
distinct datasets acquired from various DED machines, emphasizing its practical suitability
for real-world applications.

The presence of porosity in AM parts can significantly influence their mechanical
properties and overall performance, making it a crucial property for AM parts. Eliseeva
et al. [91] introduced an ML method to identify porosity in parts produced through LPBF
AM processes. The proposed methodology involves developing a transfer function that
connects location-specific processing information with microstructural features related to
porosity. The approach utilizes an ML classifier to link attributes of the time–temperature
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history to the presence or absence of porosity in specific locations of the fabricated part. A
3D model of the printed part and its microstructure were analyzed to identify important
features. Simultaneously, a digital twin of the AM process was generated to capture location-
specific process representations. The methodology achieved good results in predicting
porosity locations in AM parts, and it can be further extended to identify other thermally
linked microstructural features. The main limitation of this approach is the need for
additional data to improve the effectiveness of the classifier, especially given the relatively
rare occurrence of porosity events.

In Hespeler et al. [5], the authors emphasized the role of quality control in AM in
ensuring desired mechanical properties and avoiding defects. The authors used two metal
AM samples, one representing high-quality layers and one with low-quality layers. During
the printing of the samples, in situ process data were collected, including laser power, melt
pool size, scan line energy density, powder concentration, gas, and temperature. The data
was then preprocessed and standardized, and feature analysis techniques were applied, in-
cluding Random Forest (RF), Decision Tree (DT), and Extreme Gradient Boosting (XGBoost).
The results revealed that laser power, melt pool size, and scan line energy density were
the three most significant parameters affecting layer quality in metal AM. Afterward, a
Convolutional Neural Network (CNN) model was trained on the collected in situ data and
applied for layer-wise classification of the fabricated parts as acceptable or unacceptable.
The layer-wise evaluation of the AM process revealed that the unacceptable layers were
more concentrated in the early stages of the build process, while the acceptable layers
displayed a more uniform distribution. Although the classifier achieved high classification
accuracy, it did face overfitting, and the authors proposed expanding the dataset and
exploring regularization techniques to enhance the model’s robustness.

The work by Narayana et al. [11] involves the identification and characterization of
lack-of-fusion defects along the layer boundaries in the printed samples. The authors
examined macroscopic images and microstructural features, including columnar grain
size and phase constituents, to gain insights into the defect formation mechanisms under
different process parameters. The detection of such defects is crucial for understanding the
impact of laser power, scan speed, layer thickness, and powder feed rate on the quality of
the printed alloy. By employing an Artificial Neural Network (ANN) model, the paper not
only contributed to the optimization of process parameters but also investigated defect-
related observations, aiming to mitigate or eliminate defects and enhance the overall quality
of the Ti-6Al-4V alloy produced through DED.

Table 3 summarizes the investigated works for the detection of defects in AM using ML.

Table 3. Investigated literature regarding the application of ML for detection of defects in addi
tive manufacturing.

Title Drawback ML Method Data Available Investigated
Materials

Narayana et al. [11] N/A ANN Yes Ti-6Al-4V

Mojumder et al. [89]
Uncertainty in porosity

prediction—limited to LOF
porosity detection

Active learning, NN Yes Ti-6Al-4V

Akbari et al. [9] N/A ANN, GB, RF Yes N/A

Eliseeva et al. [91] N/A SVM, KNN, and Decision
Tree N/A Ti-6Al-4V

Van Houtum et al. [90] N/A LR, SVM, RF, and NB Yes N/A

Hespeler et al. [5] Overfitting RF, DT, XGBoost, CNN Not public N/A
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5.4. Discovery of New Materials

Discovery of new materials is a more challenging problem in comparison to predicting
material properties, classification of phases, or defect detection. We can expect more work
on this topic in the coming years as more data becomes available and research efforts
build up.

Functionally graded lattice structures (FGLSs) are intricate 3D forms with diverse
material properties, potentially offering vast engineering and materials science applications.
Veloso et al. [92] categorized lattice generation methods into Generative Design, Topology
Optimization, Machine Learning, Genetic Algorithms, and Simulation-driven approaches.
The paper discusses the utilization of ML for producing lattice structures with specific
mechanical properties and compression ratios, along with exploring genetic algorithms for
optimization. Various research studies reviewed demonstrate the efficacy of these methods
in generating tailored lattice structures.

Li et al. [93] employed inverse design to discover optimal structures for phononic
crystals with the goal of controlling the light flow at the nanoscale. Phononic crystals are
composite materials characterized by their periodicity, which leads to unique properties
and band gaps where waves cannot propagate. The unit cell of a nano-scale phononic
FGM porous beam consists of two FGM porous cores labeled Core I and Core II. The
porosity is symmetrically distributed relative to the mid-plane of the phononic crystal
(PnC). To account for size effects at the nanoscale, Nonlocal Strain Gradient Theory (NSGT)
is used, considering both nonlocal stress and strain gradient stress. This theory aids in
predicting complex phenomena like stiffness-softening or hardening due to size effects.
A simplified form of the constitutive equation, which includes the total stress tensor,
classical strain, and strain gradient tensor, is provided. This equation reflects the length-
and thickness-related size effects. The displacement field is described using the Euler
Beam assumption, which simplifies the analysis by considering the beam’s deflection in
terms of its curvature. The mechanical properties of FGMs with porosity are determined
using a modified power–law model, which accounts for continuously variable material
properties and the effect of porosity. The authors derived the governing equations for the
dynamic motion of phononic FGM porous nanobeams using Hamilton’s principle. This
principle requires the variations of the total potential energy, kinetic energy, and virtual
work conducted by external forces to be zero. Designing phononic nanobeams that can
exhibit specific band gaps is challenging due to the nonuniqueness of the problem, as
different structures can result in the same band gaps. To address this issue, the authors
introduce the Probabilistic Tandem Network (PTN) model as a solution. This deep learning
framework is designed to tackle the one-to-many problem in the inverse design of PnCs. It
consists of an Inverse Neural Network (INN), Gaussian sampling, and a Forward Neural
Network (FNN). The INN encodes band gaps into a latent space, and the FNN decodes
candidate structures from the latent space back to band gaps. The INN maps band gaps
to a Gaussian distribution characterized by mean and standard deviation, which allows
for the generation of multiple candidate structures. The deep learning models used for
the inverse design of PnCs include Conditional Generative Adversarial Neural Network
(CGAN), Conditional Variational Autoencoder (CVAE), Denoising Diffusion Probabilistic
Model (DDPM), Denoising Diffusion Implicit Models (DDIMs), Deep Neural Network
(DNN), and Tandem Neural Network (TNN). A comparison of the accuracy and diversity
performance between all the models is conducted to distinguish the inverse design model
that performs best, with PTN outperforming the others. The authors concluded that both
the analytical approach developed by the NSGT and the PTN model, based on probabilistic
supervised learning, can significantly contribute to the field of band gap engineering at a
smaller scale.

Table 4 summarizes the investigated works for the discovery of new materials in AM
using ML.
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Table 4. Investigated literature regarding the application of ML for the discovery of new materials in
additive manufacturing.

Title Drawback ML Method Data Available Investigated Materials

Veloso et al. [92] ML requires large amounts
of data and expertise

Reviews ML methods,
Genetic algorithm Yes N/A

Li et al. [93] Design of PnCs at
nanoscale

CVAE, DDPM, DDIM,
DNN, TNN, PTN Yes, upon request Phononic Crystals

5.5. Summary of Used ML Methods for FGMs Fabrication

Table 5 lists the ML methods described in this article on the literature review of
FGMs fabrication and provides the used method abbreviations in the text, the referenced
works, and their advantages and disadvantages. Implementation of most conventional ML
methods is available in various open-source and proprietary libraries, among which the
most popular library is scikit-learn. Also, many related libraries provide implementations
of ANNs, with the most popular libraries being Keras-TensorFlow and PyTorch.

Table 5. List of Machine Learning methods used in the reviewed works in this study.

ML Method Abbreviation Referenced Works Advantages Disadvantages

Artificial Neural Networks ANNs

Kim et al. [80],
Narayana et al. [11],
Alcunte et al. [82],
Raturi et al. [83],

Sulaiman et al. [84],
Wasmer et al. [85],

Mojumder et al. [89],
Akbari et al. [9],

Li et al. [93]

Capture complex
non-linear relationships
with automatic feature
extraction, can be used

with various learning tasks

Require large datasets for
training, are

computationally expensive,
and are difficult to

interpret

Logistic Regression LR Wasmer et al. [85],
Van Houtum et al. [90]

Simple implementation
and fast training

Assume a linear
relationship between data

features and targets

Support Vector Machines SVM

Alcunte et al. [82],
Raturi et al. [83],

Wasmer et al. [85],
Galvan et al. [87],

Van Houtum et al. [90]

Effective for
high-dimensional data

samples, it can use
different kernel functions

Computationally
expensive, requiring

finetuning of kernel type
and parameters

Naïve Bayes NB Van Houtum et al. [90] Simple implementation,
easy to understand

Assume independence
among the data features

k-Nearest Neighbors kNN Wasmer et al. [85] Simple implementation,
easy to understand

Requires storing the entire
dataset for inference

Decision Trees DT Kirk et al. [88],
Hespeler et al. [5]

Capture complex
relationships and make
interpretable decisions

Prone to overfitting and
training instability

Random Forest RF

Alcunte et al. [82],
Wasmer et al. [85],

Akbari et al. [9],
Van Houtum et al. [90]

Capture complex
relationships, reduce

overfitting of DT

Computationally
expensive, less

interpretable than DT

Gradient Boosting GB Akbari et al. [9]
High predictive accuracy

for tabular data and
interpretable decisions

Computationally
expensive

Extreme Gradient Boosting XGBoost Hespeler et al. [5]
High predictive accuracy

for tabular data, efficiency,
and interpretable decisions

Computationally
expensive, requires

parameter finetuning
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Table 5. Cont.

ML Method Abbreviation Referenced Works Advantages Disadvantages

Principal Component
Analysis PCA Srinivasan et al. [81]

Suitable for dimensionality
reduction and feature

selection

Information loss during
dimensionality reduction

assumes a linear
relationship between

features

Linear Discriminant
Analysis LDA Wasmer et al. [85]

Suitable for dimensionality
reduction and feature

selection

Sensitive to outliers, it
assumes a normal

distribution of features

Density-Based Spatial
Clustering of Applications

with Noise
DBSCAN Srinivasan et al. [81]

Can find clusters of
arbitrary shape, can handle

noise and outliers

Less effective for
high-dimensional data,
sensitive to parameter

selection

Genetic Algorithm GA Veloso et al. [92]

Applicable for
optimization of different

problems, including
non-linear functions

Computationally
expensive, with no

guarantee of finding an
optimal solution

Linear Regression LiR Raturi et al. [83] Simple implementation
and fast training

Assumes a linear
relationship between

features and is sensitive to
outliers

Gaussian Process
Regression GPR Raturi et al. [83]

Capture complex,
non-linear relationships

and provides uncertainty
estimates

Slow training with large
datasets, requires careful

parameter finetuning

Convolutional Neural
Networks CNNs Hespeler et al. [5]

Suitable for image
processing, robust to

variations in translations

Require a large number of
data samples, which is

computationally expensive

Probabilistic Diffusion
Neural Network PDNN Li et al. [93]

Provide probabilistic
predictions and uncertainty

estimates

Complex to implement and
train, computationally

expensive

Generative Adversarial
Networks GAN Li et al. [93]

Suitable for different
generative tasks, it can

create realistic data
samples

Difficult and unstable to
train, they can suffer from

mode collapse

Q-learning QL Dharmadhikari
et al. [8]

Model-free RL approach,
simple to implement

Struggles with large
state-action spaces can be

sample inefficient

6. Future Directions in ML for FGMs

In the domain of AM for FGMs, the integration of ML has shown considerable promise,
as evidenced by various research directions highlighted in the existing literature. However,
several challenges remain, and promising future research directions emerge to address
these issues.

One critical future direction involves the effective utilization of available data, es-
pecially from capturing parameter-process maps and microstructure-property maps. Ex-
ploiting in situ images and acoustic emissions could further enhance the performance
of ML models, providing a comprehensive understanding of the complex relationships
between processing parameters and material properties [94,95]. Addressing the challenge
of data labeling in supervised learning could be mitigated by active learning strategies
to facilitate more efficient acquisition and utilization of labeled data [32]. By allowing
models to interactively query and label new data points during training, active learning
minimizes the time, cost, and human labor associated with traditional labeling methods,
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thus enhancing the overall effectiveness of ML applications in AM. Similarly, the implemen-
tation of Reinforcement Learning strategies for continuous optimization of the processing
parameters during FGMs fabrication [8] has the potential to provide improved control over
the manufacturing process.

Uncertainty quantification in ML applications for AM presents another important
research direction. Incorporating epistemic uncertainty into ML models, especially in
regression tasks using methods like Gaussian Processes and Bayesian Neural Networks can
provide important information about the confidence intervals of the predictions besides
single point estimates [96]. Further exploration of uncertainty quantification procedures in
the context of ML applications for AM of FGMs can contribute to improved robustness of
the manufacturing process.

Transfer learning, identified as a valuable approach in the optimization of ML models
for different AM processes and materials [32], offers an alternative to retraining models
for each learning task. Future research should explore the potential of transfer learning
techniques for facilitating learning across different machines, materials, and part designs,
thereby enabling adaptive and rapid model development.

Lightweight computing models for low latency are an important area for future
development [42], due to the importance of addressing challenges in real-time monitoring
and control scenarios. Innovations in creating efficient ML models that can ensure low
latency and responsiveness are significant in the context of AM for FGMs.

In the context of AM for FGMs, cybersecurity is a pressing concern [22], as the evolving
AM landscape introduces vulnerabilities, particularly in intellectual property (IP) protec-
tion. To address this, robust cybersecurity measures, including secure communication
protocols and encryption, are essential. Developing industry-wide standards is also cru-
cial for ensuring the integrity and safety of AM processes. While not directly related
to ML, addressing cybersecurity is integral to the trustworthy and secure adoption of
AM technologies.

7. Concluding Remarks

In summary, this document surveys recent papers on ML-based optimization in AM.
The introduction highlighted the transformative impact of AM on production processes
and emphasized its capacity for customization, complex design fabrication, and waste
reduction. Section 5 focused on ML for DED and for fabricating FGMs, in particular. Previ-
ous research enabled the prediction of thermal distributions, molten pool dynamics, and
material composition, which are all crucial in shaping the properties of FGMs. ML can
potentially offer solutions to the challenges of AM, as it provides algorithms for classi-
fication, regression, clustering, and probability estimation, each contributing to distinct
aspects of AM. Furthermore, by providing insights into defect identification, parameter
optimization, and real-time monitoring, ML can significantly enhance AM processes. The
studies reviewed in this article include, but are not limited to, defect prediction, process
quality classification, and the design of FGMs. The convergence of advanced fabrication
techniques and data-driven methodologies is expected to gain importance in the coming
years and offer novel manufacturing possibilities.
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