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Abstract: Despite the widely reported potential of deep neural networks for automated breast
tumor classification and detection, these models are vulnerable to adversarial attacks, which leads
to significant performance degradation on different datasets. In this paper, we introduce a novel
adversarial attack approach under the decision-based black-box setting, where the attack does not
have access to the model parameters, and the returned information from querying the target model
consists of only the final class label prediction (i.e., hard-label attack). The proposed attack approach
has two major components: adaptive binary search and semantic-aware search. The adaptive binary
search utilizes a coarse-to-fine strategy that applies adaptive tolerance values in different searching
stages to reduce unnecessary queries. The proposed semantic mask-aware search crops the search
space by using breast anatomy, which significantly avoids invalid searches. We validate the proposed
approach using a dataset of 3378 breast ultrasound images and compare it with another state-of-
the-art method by attacking five deep learning models. The results demonstrate that the proposed
approach generates imperceptible adversarial samples at a high success rate (between 99.52% and
100%), and dramatically reduces the average and median queries by 23.96% and 31.79%, respectively,
compared with the state-of-the-art approach.

Keywords: adversarial attack; hard-label black-box attack; adaptive binary search; breast ultrasound;
semantic-aware search

1. Introduction

Breast cancer has emerged as one of the most prevalent types of cancer globally,
contributing to nearly 12% of all newly diagnosed cancer cases, and is estimated to affect
around 30% of female cancer cases in the U.S. in 2024 [1]. Although Deep Neural Networks
(DNNs) demonstrated unprecedented performance in medical image classification, recent
research [2,3] has indicated that DNNs as well as conventional machine learning (ML)
models can be compromised by adversarial samples. That is, adversarial samples can be
synthesized by adding imperceptible perturbations to clean inputs and cause the target
DNNs to misclassify such samples. Adversarial attacks [4–6] have been realized to achieve
high attack success rates by introducing low levels of perturbations. Adversarial attacks
can be categorized into white-box attacks and black-box attacks. In a white-box adversarial
setting, attackers are assumed to have complete knowledge of the targeted model, including
a knowledge of the model architecture, parameters, gradients, objective function, etc.
Similarly, prior works [7] have demonstrated that adversarial samples from one ML model
can be transferred to other models in a black-box setting. The black-box setting is more
challenging because adversaries do not have access to the model structure or parameters.
It is also more realistic since most model developers do not provide such access to users. In
both white-box and black-box attacks, adversarial attacks can be categorized as targeted
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and untargeted. Targeted attacks fool a model into falsely predicting a specific label for
the adversarial image. Untargeted attacks generate an adversarial sample that is classified
as some arbitrary incorrect label. Adversarial attacks can also occur under two scenarios:
(1) evasion attack and (2) poisoning attack. In an evasion attack, only malicious samples
are produced to evade detection and induce a misclassification. In a poisoning attack,
the attacker injects fake training data intending to corrupt the training. Poisoning attacks,
while potentially more successful, can be harder to accomplish since the attacker must have
access to the training dataset before the model is trained. This makes black-box attacks
have more practical significance.

Most existing adversarial attacks are designed for evading DNNs designed for the
classification of natural image datasets (e.g., CIFAR-10 [8] and ImageNet [9]). However,
some modalities of medical images (e.g., breast ultrasound images) possess domain-specific
characteristics distinct from natural images. As a result, black-box attacks are more chal-
lenging with medical images in terms of the significant number of model queries to achieve
a successful attack. As shown in the second row of Figure 1, Rays [10] needs extremely
large numbers of queries to generate adversarial images for five breast ultrasound images.
To overcome the challenges in existing attacks, we propose a new coarse-to-fine approach to
reduce the number of queries in extreme examples using a combination of adaptive binary
search and semantic-aware search. The method is motivated by declining the swing search
of the decision boundary at an early stage and narrowing down search regions according
to the search depth. Furthermore, as shown in five adversarial images (the third row of
Figure 1), the proposed method achieves similar peak signal-to-noise ratio (PSNR) scores
as RayS but with significantly fewer numbers of queries.

Figure 1. Adversarial images generated using RayS and our method. Q: number of queries, PNSR:
peak signal-to-noise ratio.

Adversarial attack research focuses on studying and understanding the vulnerabilities
of ML models to malicious attacks. The purpose of this research is to identify weaknesses
in ML models and to develop techniques to defend against adversarial attacks to ensure
the reliability and trustworthiness of ML-based systems. The primary contributions of our
study are summarized below.

• The proposed adaptive binary search algorithm effectively reduces unnecessary
queries by searching for adversarial samples in a coarse-to-fine manner.

• The proposed semantic-aware search algorithm avoids invalid searches by cropping
the search space using semantic masks from breast anatomy.
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• The combination of the two above algorithms leads to a novel hard-label black-box at-
tack approach. It significantly reduces the number of queries for searching adversaries
for extreme samples (Figure 1).

The rest of the paper is organized as follows. In Section 2 we discuss relevant back-
ground information and related work. In Section 3 we present the general formulation of a
hard-label black-box adversarial attack, followed by our proposed methods. Section 4 out-
lines our experimental setup, relevant parameter settings, and results. Finally, in Section 5
we summarize our proposed work and experimental results.

2. Related Works
2.1. White-Box Adversarial Attack

L-BFGS [2] was the first article that demonstrated that adding a small perturbation to
an image can evade a target ML classifier and produce a misclassification. FGSM attack
[3] used the sign of the gradient of a neural network loss with respect to the input image
to find adversarial perturbations. Ref. [11] proposed an FGSM-like attack that used an
attention map to help determine salient image regions that, when perturbed, are more
likely to induce a misclassification. PGD attack [4] applied FGSM iteratively with a smaller
distortion in each step to minimize the overall perturbation. CW attack [5] formulated the
adversarial example generation as a constrained optimization problem that approximates
the minimal perturbation for misclassifying an input sample. In [12], the authors develop a
novel attack framework that uses trust regions [13] to more efficiently generate adversarial
samples with smaller perturbations when compared to other white-box methods like CW.

2.2. Black-Box Adversarial Attack

A query-based (soft-label) black-box attack obtains information about a target ML
model by querying the model. In a score-based attack, an adversary can acquire probability
confidence scores from the targeted model; e.g., zeroth order optimization approaches [14]
can employ returned confidence scores to estimate the gradient and generate adversarial
samples. SimBA [15] used confidence scores to create an adversarial sample that moves
away from clean samples and toward the decision boundary. LeBA [16] generates adversar-
ial samples using a surrogate model. Surrogate models are trained to mimic the behavior
of the model being attacked (sometimes referred to as the victim model). LeBA trains
the surrogate model using information about the soft labels predicted using the victim
model, thereby encouraging the surrogate model to more closely match the victim model.
In [17], the authors develop a framework for training a generalized surrogate model by
performing meta-training across several different models and datasets. This generalized
model can then be fine-tuned using a sm all amount of query-based information from the
target model. SignHuner [18] estimated the gradient sign bits [19] based on the gradient
from the previous step to reach faster convergence.

Decision-based (hard-label) attacks only have access to the top-1 class prediction from
the target model [20]. HJSA [21] utilizes binary information at the decision boundary to
calculate the directional gradient. SignOPT [22] extended the work in [23], and specified a
single query oracle for computing the zeroth-order gradient direction. RayS [10] built upon
the research in SignHuner and SignOPT and proposed a hyperparameter-free decision-
based attack without zeroth-order gradient estimation. It significantly reduced the number
of queries for attacking DNNs trained to perform natural image classification to several
hundred. But, as shown in Figure 1, it can fail to use this small number of queries to find
adversaries for many extreme BUS images.

2.3. Adversarial Defense Strategies

In addition to developing adversarial attacks, adversarial machine learning also in-
volves finding ways to defend against such attacks. These defense strategies can be broadly
categorized as detection methods or adversarial defense methods. Detection methods aim
to develop methods to identify adversarial images, while adversarial defense methods aim
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to improve the adversarial robustness of a model. Models with good adversarial robustness
are less likely to misclassify adversarial images. In [24], the authors propose a novel adver-
sarial detection framework. An image is processed via smoothing and quantization. If the
predicted label of the image before and after processing differs, it is likely that the image
has been adversarially tampered with. Another way to detect such attacks is to embed
imperceptible watermarks into images that are known to be clean [25]. If the extracted
watermark is different than the original watermark, it is likely the image has been tampered
with. In [26], the authors propose a novel defense strategy that combines features extracted
from a deep convolutional network with feature vectors created using more traditional
image processing techniques like HOG [27].

2.4. Breast Ultrasound Image (BUS) Classification

Recent studies showed that DNNs can enhance the classification of breast ultrasound
images. Ref. [28] indicated deep learning outcomes in biomedical applications could be
significantly enhanced through the development of a pre-trained and fine-tuned convolu-
tional neural network (CNN) architecture using medical imaging data. Ref. [29] designed
a dual-sampling convolutional neural network (DSCNN) with residual networks for the
diagnosis of breast tumor images. Their network could prevent gradient disappearance
and degradation, leading to improved accuracy by using a parallel DSCNN. ESTAN [30]
presented a new architecture that utilizes two encoders to extract global and local infor-
mation and integrate image context information at varying scales. The authors introduced
row–column-wise kernels that conform to the horizontal arrangement of the breast anatomy
tissue layers in BUS images. By employing this approach, their network demonstrated
enhanced segmentation performance for tumors of varying sizes and surpassed the per-
formance of existing state-of-the-art methods for BUS segmentation. MT-ESTAN [31] is a
multi-task neural network that combines two separate tasks, (1) tumor classification (pri-
mary task) and (2) tumor segmentation (secondary task). The backbone for this multi-task
model is based on ESTAN. The network learns from both tasks and mitigates low general-
ization issues caused by small training datasets. The learned shared features between object
segmentation and classification improve the robustness and generalizability of the model.

However, Ref. [32] implemented FGSM, BIM [33], PGD, and CW on medical images
and proved that medical deep learning systems are vulnerable to small carefully engineered
perturbations. They explained the reasons are the complex biological textures in medical
images that cause higher gradient regions, and those regions are sensitive to small adver-
sarial perturbations. Moreover, DNNs that are currently used for large-scale natural image
classification may not be optimized for medical imaging tasks due to overparameterization.
This can lead to a sharp loss landscape and an increased susceptibility to adversarial attacks.

3. Materials and Methods
3.1. Preliminary

Let f be a DNN model, x0 the input (clean image), and y the true class label associated
with x0. A general untargeted hard-label black-box attack can be formulated as

x∗ = arg min
x

D(x, x0)∞ such that f (x) ̸= y (1)

where D(x, x0)∞ is the distance between x and x0 according to the L∞ norm. The goal is to
generate an adversarial sample x nearest to the x0. OPT and SignOPT [22,23] re-formulated
the hard-label black-box attack as a two-stage optimization

θ∗ = arg min
θ

g(θ) (2)

g(θ) = minimize λ s.t. f (x0 + λ
θ

||θ|| ) ̸= y. (3)
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Instead of directly searching an adversarial sample, SignOPT searches the direction θ
to minimize the distortion g(θ) in Equation (2). In Equations (2) and (3), g(θ) is the distance
from x0 to the closest adversarial sample along the search direction θ and λ is the decision
boundary radius in the corresponding search direction. g(θ) is calculated using a binary
search algorithm, and SignOPT uses the gradient descent method to solve this optimization
problem. They estimate the gradient by taking the average of a random Gaussian vector
(descent direction) through the sign of 200 random directions.

RayS [10] significantly improved the optimization of the above-formulated problem
by bounding the search space to a discrete set of ray directions, i.e., θ ∈ {−1, 1}d where d is
the number of dimensions of the space. It also modified the optimization framework of
Equation (3) to a non-zeroth-order gradient estimation on the L∞ norm ball. RayS reduced
the possible searching directions from Rd [22,23] to 2d. RayS used a greedy search algorithm
without estimating any gradients, which only stored the best search direction established
on the previous search direction. Different from OPT and SignOPT [21–23], taking multiple
or an average of a few queries to determine the next search direction, RayS queried f (x)
once before doing a binary search for λ. The search direction is selected to perform a binary
search, only if an adversarial sample x can be found.

Nevertheless, RayS lacked a reliable way to look for an adversarial example when the
block partitions rise. The reason is the search directions get closer to each other. Their small
constant binary search tolerance causes more unnecessary queries from hierarchical search.
We proposed a novel approach that applies adaptive binary search and semantic-aware
search to reduce the search queries on extreme examples. Our proposed method follows
RayS (Equation (3)).

3.2. Adaptive Binary Search

The binary search has been widely adopted in hard-label black-box attack [10,15,21–23]
to efficiently search adversaries along a direction (Equation (2)). It aims to minimize the
distortion to generate adversarial examples close to the decision boundary. The efficiency of
the binary search depends on the number of queries required to locate the best adversarial
samples. The number of queries in binary search is directly determined by a tolerance
value that defines the acceptable precision of the target adversary. For a specific search
direction in the binary search algorithm, a qualified adversary should meet the following
condition defined by a tolerance τ

||xe − xs||∞ ≤ τ s.t. f (xs) = y and f (xe) ̸= y, (4)

where xs is a clean sample, and xe is its adversary along a search direction. In RayS [10],
τ was defined as a fixed small positive value. Using a small τ allows the algorithm to
find adversaries close to a decision boundary but needs more queries to search for a valid
match. On the other hand, a large τ requires fewer queries but generates adversaries that
are not close to a decision boundary. RayS used a hierarchical searching strategy and a
fixed small τ to search a sequence of adversaries to approach the searching goal defined
by the distance upper bound ϵ. Because of the fixed small τ, all adversaries are searched
using the same high precision, resulting in many unnecessary queries. This may lead to an
enormous number of queries, especially for a deep search hierarchy.

Inspired by the trade-off between tolerance and the number of queries, this work
proposes the adaptive binary search (AdptBS) method detailed in Algorithm 1, which
reduces the number of queries by using adaptive tolerance values. In the input of AdptBS,
rbest is the distance from the current best adversary to the clean sample; ϵ is the upper bound
of the distance and defines our searching goal. In line 1, θu is the unit search direction, and
x0 + θ is an adversary of x0 along θu. In lines 2–3, the algorithm examines if an adversary
can be generated using the best radius along the current search direction; if not, a better
adversary with a shorter distance cannot be generated using θu, and the binary search is
ended with only one query. Line 4 initializes the binary search by setting x0 to the clean
image and the initial adversarial sample to x0 + min(rbest, ||θ||2) · θu. Lines 5 and 6 define



Computers 2024, 13, 203 6 of 14

a soft margin ([µ · τ + ϵ, τ + ϵ]) and reduce the tolerance using the decay rate (c) if the
distance is in the soft margin. The tolerance is used as the stopping condition of the binary
search in lines 7–12. This adaptive change in the tolerance applies large τ when adversarial
samples are not close to the decision boundary, which leads to a coarse search. When the
distance between the adversary and the clean sample is in the soft margin, the reduced
τ results in a fine search that produces adversaries closer to the decision boundary. The
design reduces unnecessary fine searches in all directions and could reduce the number of
queries significantly. As shown in Figure 2, for a direction with an initial faraway adversary,
a coarse search with a large τ is applied; and for a direction with a close adversary, a fine
search with a small τ is used. The blue bar defines the soft margin.

The initial τ and µ is set to 0.1 and 0.9, respectively, by experiments. The value of ϵ
(0.3) is adopted from RayS [10]. The decay rate, c is set to 0.1 by experiments.

Other Class

Class y

Figure 2. Adaptive tolerance range in Algorithm 1. x0 is clean image. x′ and x′′ are two adversarial
samples. The tolerance τ changes adaptively along different search directions.

Algorithm 1 AdptBS

Input: Model f , clean image x0, label y, distance upper bound ϵ, search direction θ, best
radius rbest, and tolerance τ

1: θu = θ
||θ||2

▷ normalization
2: if f (x0 + rbest · θu) == y then ▷ Invalid search direction
3: return τ, ∞
4: xs = x0, xe = x0 + min(rbest, ||θ||2) · θu ▷ xs is the start point, xe is the endpoint
5: if µ · τ + ϵ < ||xe − xs||∞ < τ + ϵ then
6: τ = τ · c ▷ c is the decay rate
7: while ||xe − xs||∞ > τ do
8: xm = (xs + xe)/2
9: if f (xm) ̸= y then

10: xe = xm
11: else
12: xs = xm

13: return τ, ||xe − x0||∞

3.3. Semantic-Aware Search

RayS [10] determines the search directions using the raw image space with high
dimensions. Guessing Smart [34] proposed, using a regional mask in their attack, to limit
the perturbation to specific regions, thereby reducing the dimensionality of the search
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directions and avoiding queries that were unlikely to change a model’s results. In BUS
images, tumor classes are mainly determined by image features in image regions of breast
tumors and mammary tissues, and it is more efficient to search adversaries by adding
perturbations only to these regions.

Inspired by the regional masking approach [34] and the nature of BUS images, this
work proposes a semantic-aware search approach to reduce the dimensionality of search
directions. In Algorithm 2, the semantic mask M is generated by using A2DMN [35] and
has non-zero values for tumor and mammary regions (Figure 3), and Q is the query budget.
In lines 3–5, the vector of the search direction is split into 2k blocks, and all pixels in a block
change directions together. Lines 10–11 adaptively increase the number of blocks to crop
when fine-splitting (k ≥ K) is applied. Line 14 limits the search to blocks in the union of the
semantic mask M and cropping mask, which lets the search focus on regions of interest.
The cropping mask trims blocks at the top and bottom of an image. Lines 15–17 attempt to
find an adversary along the current direction; if this fails, the current direction is skipped.
Lines 18–19 apply the proposed AdaptBS algorithm to get the best adversary along the
current direction and update the best search direction (θbest) and best distance.

Figure 3. BUS images (left column) and their respective semantic masks for the mammary and tumor
regions (right column).
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In Figure 4, the cropping mask can be considered as a pruned branch to remove
unnecessary parts of the search space, compared with RayS. The union of semantic masks
and cropping masks skips checking a region that does not contain crucial features.

Algorithm 2 Semantic-Aware Search

Input: : Model f , clean image x0, label y, distance upper bound ϵ, query limit Q, semantic
mask M

1: Initialize the search direction θbest = (1, · · · , 1), best radius rbest = ∞, and block level
k = 0

2: Initialize binary search tolerance τ = 0.1, block level cut point K, and cropping block
size cropk

3: function BLOCKSPLIT(k)
4: cut θbest into 2k blocks of equal size and save the splitting blocks into a list
5: return the block list
6: remaining queries = Q
7: while remaining queries > 0 do
8: θtmp = θbest
9: blocks = BlockSplit(k)

10: if k > K then
11: cropk = cropk · 2 ▷ skip more blocks for fine splitting
12: for i in blocks do
13: θtmp[indi] = −1 · θtmp[indi] ▷ indi contains the indices of all pixels in block i
14: if i ⊆ (blocks[cropk:−cropk] ∪ M) then
15: if An adversary xadv along θtmp can be found then
16: θtmp = xadv − x0
17: else: continue ▷ skip invalid search direction
18: τ, rtmp = AdptBS( f , x0, y, ϵ, θtmp, rbest, τ)
19: if rtmp < rbest then
20: rbest = rtmp, θbest = θtmp

21: k += 1
22: if rbest < ϵ then ▷ early stopping
23: break
24: return x0 +

θbest
||θbest ||2

· rbest

Input Image

Flatten 1D search space

1/2 search space 1/2 search space 

1/4 Search Space 1/4 Search Space 1/4 Search Space 1/4 Search Space 

Search Space Search Space Search Space 

... ...

PrunedXXX
Mask Region

Figure 4. Block splitting in semantic-aware search.

4. Results
4.1. Experiment Setup
4.1.1. Datasets and Metrics

We validate the performance of attack algorithms using four publicly available BUS
datasets: BUSI [36], BUSIS [37], HMSS [38], and Dataset B [39]. The combined dataset
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contains a total of 3378 images (1698 benign and 1680 malignant). Most images in BUS
datasets are rectangular. However, DNNs need a square input shape, so images must be
resized to a uniform square shape. If rectangular images are directly resized to a square
shape, the morphology of the tumor region will be distorted. To avoid these changes, all
images and their corresponding semantic masks are zero-padded to be square following
the procedure used in MT-ESTAN [31]. After padding, images and masks are resized to be
224 × 224 pixels. We randomly select 700 images from the dataset for testing, and the rest of
the images are used for training. The number of average (AVG) and median (MED) queries,
the attack success (SR) rate, and the peak signal-to-noise ratio (PSNR) is used to evaluate
the performance of different adversarial attacks quantitatively. The number of average and
median queries is counted from successfully attacked images on the test set. The success
rate is the ratio between successful attacks and total attacks, and it is calculated using only
images that were correctly classified via the targeted model on the test set. An attack is
considered successful if the L∞ norm between the adversarial sample and the clean image
is less than the given ϵ. PSNR is used to measure the quality of the produced adversarial
images. Higher PSNR values correspond to higher-quality adversarial images.

4.1.2. Experiment Environment

All neural network models and adversarial attacks are implemented using Python
3.7.0, Keras 2.3.1 [40], TensorFlow 1.13.1 [41], and Pytorch 1.9.1 [42]. All experiments were
conducted with NIVIDA Quadro RTX 8000 GPUs, equipped with CUDA Toolkit 10.2.

4.1.3. Target Model Settings

We test the effectiveness of the proposed approach by attacking five well-known image
classification networks, ResNet50 [43], VGG16 [44], DenseNet121 [45], MobileNetV2 [46],
and InceptionV3 [47]. These models are selected because they are widely used and achieve
reasonably good performance, are applied as target models in other black-box attack
approaches, and have publicly available source codes. Each model is pre-trained using the
ImageNet dataset and fine-tuned on the combined BUS dataset. All models were fine-tuned
for 100 epochs with the Adam optimizer, a learning rate of 0.0001, and a batch size of
4. Their respective accuracy on the clean BUS dataset is 82.94%, 80.7%, 87.83%, 83.36%,
and 83.64%. ResNet50 is used to validate the effectiveness of the adaptive binary search
and semantic-aware search, as well as to find the best parameter settings for the proposed
attacks. We compare the proposed approach with three other hard-label black-box attacks
(OPT, Sign-OPT, and RayS) across the five aforementioned image classifiers. We select
the three approaches because they achieve state-of-the-art performance in the setting of
black-box hard-label attacks. It is an interesting topic to study the effectiveness of the
proposed method against different defense mechanisms, and we will explore this in the
future. The proposed experiments using five different network architectures are sufficient
to validate the effectiveness of the proposed method to improve query efficiency.

4.1.4. Adversarial Attack Settings

Following the adversarial attack settings in RayS [10], we set the distance upper bound
ϵ to 0.05, and the maximum number of queries to 10,000 for all attacks. We use the original
paper’s parameter settings for OPT [23] and Sign-OPT [22].

4.2. The Effectiveness of Adaptive Binary Search

In this section, different binary search strategies in the RayS attack framework are
validated using ResNet50. The original RayS set a fixed binary search tolerance τ to 0.001.
The results of RayS with other τ values and AdptBS are reported in Table 1. The results
in the first three rows show that the number of queries (AVG and MED) is sensitive to τ.
Small τ values need more queries to find adversaries. On the other hand, large τ values can
significantly reduce the queries but may also lead to a decreased success rate. Therefore, the
attacker would need to perform the attack several times to find the best value of τ, which is
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not efficient. Thus, an adaptive τ can automatically obtain the best value for searching the
initial attack starting point and adjust tolerance based on the current distance between the
adversarial sample and the decision boundary. The proposed AdaptBS algorithm is used
to replace the fixed tolerance binary search algorithm in the RayS attack, and its results are
shown in the last three rows of Table 1. The AdptBS method preserves the high success rate
(99.83%) of the original RayS with fixed small τ and reduces the AVG and MED queries
by 21.47% and 29.37%. µ decides when to change τ; the best result is µ = 0.9 and the
performance is reduced when using smaller τ. µ = 0.9 restricts τ to quickly reduce to a very
small value, which uses large τ for immense perturbations and small τ when perturbations
are near ϵ.

Table 1. The Results of the attacks with different binary search methods. The percentage values in
the parenthesis show the reduction of queries compared with the baseline method (first row).

Attack Method µ τ Queries (AVG) ↓ Queries (MED) ↓ SR (%) ↑

- 0.001(original) 411.94 248.5 99.83

RayS [10] - 0.1 299.06 (−27.40%) 159.0 (−36.01%) 99.15 (−0.68%)

- 0.01 346.07 (−15.99%) 206.0 (−20.63%) 99.83

0.9 323.47 (−21.47%) 175.5 (−29.37%) 99.83

AdptBS 0.8 Adaptive 325.91 (−20.88%) 178.5 (−28.16%) 99.83

0.7 330.26 (−19.82%) 181.0 (−27.16%) 99.83

4.3. The Effectiveness of Semantic-Aware Search

The semantic-aware search in RayS and Semantic-Aware AdaptBS are compared using
ResNet50. The semantic-aware search aims to reduce the search space. It is integrated into
RayS and the proposed AdptBS algorithm and the results are shown in Table 2. The original
RayS with the proposed semantic-aware search reduces the AVG and MED queries by
3.87% and 4.22%, respectively. The parameters used for the attack are τ = 0.001, cropk = 2
and K = 5. The semantic-aware search with the proposed AdptBS algorithm can reduce the
AVG queries by 23.96% and the MED queries by 31.79% with µ = 0.9, cropk = 2, and K = 5.
The impressive results demonstrate that adding small perturbations only to breast tumors
and mammary regions can find adversarial samples more efficiently. Table 2 demonstrates
that the best cropk is 2, and the SR is reduced when cropk is increased to a larger value.
Table 2 shows MED queries in Semantic-Aware AdptBS for K = 5 and K = 6 are both 169.5.
Since K = 5 performed slightly better in terms of AVG queries, we set K = 5 for the rest of
the experiments.

Table 2. Results of attacks with semantic-aware search.

Attack Method µ cropk K Queries (AVG)↓ Queries (MED)↓ SR (%)↑

RayS [10] - - - 411.94 248.5 99.83

- 2 4 402.29 (−0.23%) 236.5 (−4.82%) 99.83

- 2 5 395.98 (−3.87%) 238.0 (−4.22%) 99.83

RayS + Semantic Mask - 2 6 399.68 (−2.97%) 238.5 (−4.02%) 99.83

- 3 5 404.70 (−1.75%) 243.5 (−2.01%) 99.83

- 4 5 402.29 (−2.34%) 236.5 (−5.07%) 99.83

2 4 308.62 (-25.07%) 164 (−34.00%) 99.66 (−0.17%)

2 5 313.22 (−23.96%) 169.5 (−31.79%) 99.83

Semantic-Aware AdptBS 0.9 2 6 318.21 (−22.75%) 169.5 (−31.79%) 99.83

3 5 309.18 (−24.94%) 170.0 (−31.58%) 99.49 (−0.34%)

4 5 308.62 (−25.08%) 164.0 (−34.00%) 99.66 (−0.17%)
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The proposed method is also effective at reducing the number of queries for searching
adversaries for extreme samples. When using RayS, 29.51% and 15% of test images use
more than 400 and 600 queries, respectively. However, for the proposed approach, only
15.68% and 9.61% of test images use more than 400 and 600 queries, respectively. Instances
of extreme cases in both approaches are shown in Figure 1.

4.4. Attack on Other Deep Classifiers

RayS and the proposed method are used to attack five deep learning models, ResNet50,
DenseNet121, VGG16, MobileNetV2, and InceptionV3. The five models are pre-trained
on the ImageNet dataset and fine-tuned on the training set of the combined BUS dataset
based on the settings used in [31]. The tolerance τ of RayS is 0.001 for all target models. The
parameters for Semantic-Aware AdptBS are µ = 0.9, cropk = 2, and K = 5 for all models.
As shown in Table 3, the proposed method outperforms RayS in terms of AVG and MED
queries when attacking all models. For VGG16, the MED queries of the proposed method
are 33.67% less than that of the RayS. For DeseNet121, the MED queries of the proposed
method are 32.03% less than that of the RayS. In addition, DenseNet121 required more
queries during attacks, which indicates that the model is more robust than the other four
models. Since we set the distance upper bound ϵ to 0.05, the PSNR score among all five
models except MobileNetV2 is close to 27 dB. The proposed attack achieved a similar PSNR
score with fewer queries.

Table 3. Results of attacking five different models.

Model Method Queries (AVG)↓ Queries (MED)↓ SR (%)↑ AVG PSNR (dB)↑

ResNet50
RayS 411.94 248.5 99.83 27.90

Ours 313.22 169.5 99.83 27.91

DenseNet121
RayS 618.67 384.0 99.52 27.57

Ours 509.28 261.0 99.52 27.55

VGG16
RayS 456.06 297.0 100 27.64

Ours 368.68 197.0 100 27.58

MobileNetv2
RayS 417.27 256.5 100 28.16

Ours 317.61 177 100 28.18

Inceptionv3
RayS 483.88 296 99.83 27.87

Ours 370.35 196 99.83 27.85

4.5. Comparison with State-of-the-Art Attacks

Three state-of-the-art hard-label black-box attack approaches (i.e., OPT [23], SignOPT [22],
and RayS) are compared with the proposed method. The three attacks use a fixed tolerance
for binary search. ResNet50 is used as the baseline classifier. As shown in Table 4, Sign-OPT
and OPT randomly initialize a starting point with Gaussian noise or uniform noise and
require many queries when using binary search to find the direction with the shortest
distance to the decision boundary and to calculate the directional derivative. Each search
direction generated using random noise needs a binary search to find the closest distance
to the decision boundary. The binary search for each direction causes a massive number
of queries. RayS significantly improves the success rate and reduces the queries from
several thousand to only several hundred due to its novel search strategy in a discrete
space. These three attacks all use the same tolerance for binary search, which produces
more queries to find an adversarial sample close to the decision boundary. Moreover, all
three attacks search the entire image for each iteration, which is a large search space. The
local semantic-aware search shrinks the search space to only include significant features.
The proposed method achieves the same success rate as RayS but outperforms it in terms of
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AVG and MED queries; e.g., the proposed method’s AVG queries are 21.5% less than Rays,
and its MED queries are 29.4% less than Rays. Since the proposed method outperforms
the state-of-the-art by a large margin, a statistical analysis is not necessary to prove the
significance of the results. Both OPT and SignOPT have higher PSNR, but the success rate
is lower than our methods.

Table 4. The performance of the state-of-the-art hard-label black-box attack approaches on ResNet50.

Method Queries (AVG)↓ Queries (MED)↓ SR (%)↑ AVG PSNR (dB)↑

OPT [23] 3218.36 2120.5 33.72 41.45

Sign-OPT [22] 7066.05 7137.0 24.78 42.63

RayS [10] 411.94 248.5 99.83 27.90

Ours 323.47 175.5 99.83 27.91

5. Conclusions

Developing adversarial attacks is critical for investigating and mitigating potential
vulnerabilities in deep learning-based models, especially in the context of high-risk applica-
tions like computer-aided diagnostic systems and self-driving vehicles. A failure to mitigate
these vulnerabilities could lead to improper medical diagnoses, significant property dam-
age, or loss of life. This work introduces a novel black-box adversarial attack approach
against deep learning classifiers for breast ultrasound images. It only requires hard-label
predicted outputs created via the target model for the generation of adversarial samples.
The proposed attack method integrates the semantic-aware search and adaptive binary
search and outperforms state-of-the-art approaches in terms of average and median queries.
The adaptive binary search component allows the automatic selection of an appropriate
tolerance for binary search in different search stages. Using a semantic mask reduces the
attack search space, which is critical due to the tremendous impact on model prediction.
Experimental results on a large dataset of BUS images demonstrate the query efficiency
and the effectiveness of the proposed black-box attack.

Despite the good performance of the proposed attacks, there are several limitations and
shortcomings. The Semantic AdptBS algorithm is dependent on the availability and quality
of semantic masks. In general, image classification datasets do not have semantic masks
available. Moreover, it is unclear whether the performance of the attack on different learning
tasks (e.g., image segmentation, video classification, etc.) will be affected. Moreover, in
this manuscript, we only have the attacks on BUS images. Therefore, there is a chance our
method is slightly biased towards this image modality, but given that the algorithms make
no explicit assumptions about image modality, we do not believe this is likely. It is also
unclear how well these attacks will perform on natural images, images from other medical
modalities, or in the presence of adversarial defense strategies. Future work will be focused
on investigating and mitigating these potential shortcomings.
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