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Abstract—The focus of this work is on robot learning of 
cyclic motions. The term ‘cyclic’ refers to motions which are 
repeated, but do not have a strictly defined period. The 
dynamics of a set of human demonstrated cyclic motions is 
approximated with mixtures of linear systems. The particular 
problems that are tackled here are: the inconsistency in 
periodicity of cyclic motions, occurrence of high accelerations 
in the transient period when reproducing the learned dynamics, 
and learning trajectories that involve a combination of 
translatory and cyclic motion components. Solutions are 
proposed for the aforementioned problems, and their validity is 
assessed through simulations. The proposed work can find 
implementation in learning from observation of cyclic 
industrial tasks (e.g., painting, peening) or service tasks (e.g., 
ironing, wiping). 
 

Index terms—Robot learning, dynamical systems, 
programming by demonstration. 

I. INTRODUCTION 

ODAY’S use of robots in the industry is mainly limited to 
repetitive tasks in structured environments, such as 
applications with large series of identical parts. Among 

the requirements for increasing the number of robot 
applications is providing forms for simple, quick and 
flexible programming of robots for new tasks, e.g., small 
series of parts productions. One paradigm that provides such 
a framework is robot Programming by Demonstration (PbD) 
[1 – 4], which refers to automated robot programming from 
observations of tasks demonstrated by task experts.  

This work concentrates on reproduction of cyclic motions 
by a robot from human demonstrations. In this context, 
cyclic motions refer to motions which repeat, but might not 
have a strictly defined period or phase [5]. Hence, the 
periodic motions represent a special case of cyclic motions 
with a constant period. This definition of cyclic motions 
relates to the human produced repeated movements, i.e., to 
the inability of humans to produce perfectly periodic 
movements. The motivation for learning cyclic motions 
stems from their frequent use for many industrial robot 
applications, e.g., spray painting, polishing, abrasive 
blasting, etc. Moreover, many potential service robot 
applications involve cyclic movements, e.g., ironing, wiping, 
cleaning.   

The demonstrated cyclic trajectories are modeled here as a 
set of nonlinear differential equations, by using the 

dynamical systems approach proposed by Ijspeert et al. [1]. 
In the literature, a dynamical system with a fixed point 
attractor has been employed for encoding discrete 
movements in Ijspeert et al.[6], where the goal was to reach 
a particular state of the system. Similarly, periodic 
movements were encoded by dynamical systems with limit 
cycle behavior [7]. The demonstrated motions were modeled 
through two coupled dynamical systems: a canonical system 
which defines the phase evolution, and a transformation 
system which models the position, velocity and acceleration 
of the movements. The main advantage of using dynamical 
systems for robot learning consists of employing stable 
models which drive the system toward the attractor from 
different initial conditions.  The learned motions are robust 
to perturbations and parameters variations, which is 
important for reproduction of learned skills in unstructured 
environments. Moreover, the learned motions are spatially 
invariant, meaning that trajectories with different amplitude, 
baseline and frequency can be reproduced from a learned 
model of the motions. 

This work proposes several modifications of the 
dynamical systems approach in Ijspeert et al. [1], related to 
its implementation in learning industrial tasks with repeated 
motions. To deal with the random nature of human motions, 
it is proposed here to utilize the instantaneous period of the 
demonstrated motions in the learning step. To handle the 
errors in the reproduction of the motions during the transient 
period, a system of undamped mass-spring is employed. 
Lastly, most of the periodic industrial tasks involve 
translatory components for some of the coordinates of the 
motions. This case is studied here, and changing baseline of 
the movements is adopted to deal with the translatory 
components. 

The paper is organized as follows. Section II provides an 
overview of the dynamical system approach introduced in 
Ijspeert et al. [1]. Section III discusses learning cyclic 
motions with a period that changes with the time evolution, 
which is the case for human demonstrated trajectories. 
Section IV proposes a dynamical system for initialization of 
the reproduction of cyclic motions, in order to reduce the 
initial errors and/or high accelerations. Section V considers 
learning cyclic motions with translation along some motion 
directions. Section VI summarizes the work.  
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II. LEARNING WITH DYNAMICAL SYSTEMS 

In the recent years, a body of works emerged which is 
oriented toward learning attractor landscapes based on the 
dynamics of demonstrated trajectories, as opposed to the 
PbD methods directed toward generating a single 
generalized trajectory [3]. The dynamical systems exploit 
the observed information for the positions, velocities and/or 
accelerations of the demonstrations, and approximate the 
nonlinear dynamic of the motion with mixtures of linear 
systems. The pioneering work in Ijspeert et al. [6] employed 
a set of differential equations for modeling demonstrated 
trajectories, which was coupled with a canonical dynamical 
system for controlling the phase variable of the system. 
Several later works [8-10] proposed certain modifications or 
improvements of this model. Another group of researchers 
working on learning the motion dynamics put the main 
emphasis on modeling the multivariate joint probability 
distribution of the demonstrated positions, velocities and/or 
accelerations. Statistical parametric models, such as Hidden 
Markov Model [11] or Gaussian Mixture Model [12-13] 
were used to encode the correlations between the dynamical 
variables of the demonstrated trajectories and to generate 
robot reproduction policies. The later works were focused 
principally on goal directed motions, and less attention was 
paid on the periodic motions.  

The dynamical systems approach formulated in Ijspeert et 
al. [7] and its modifications [8-10] use a mass-damper-
spring model: 

( )goalM x B x K x x F                    (1) 

where xgoal denotes the desired steady state value of the state 
variable, M, B, and K are the parameters of the model, and F 
is a nonlinear forcing term which is learned from the 
demonstrated motions.  

The dynamical system (1) is often written in a state space 

form ( , , )f  x x , with states  1 2x xx , a canonical 

variable , and a set of high level parameters   learned 
from the demonstrations, such as period, baseline, 
amplitude, etc. Thus, (1) can be rewritten as 

 2 1 2

1 2

( )goalx x x x F

x x

  



   






                  (2) 

where x1 and x2 denote the position and velocity of the 
trajectories, respectively, and   is the period of the motions. 
The parameters  and  are chosen so that the system is 
critically damped (to avoid overshooting the desired values 
of the variables). The force term F is a nonlinear periodic 
function of the canonical variable   and/or the amplitude of 
the motions A. The variable  defines a canonical system 
which anchors the dynamical system into the phase of the 
oscillations, which is often formulated as a phase oscillator 

        (3) 

where  is the fundamental frequency component of the 
oscillations. Other types of oscillators can be used for the 
canonical system (3) as well. 

 The forcing term F is represented as a linear combination 
of a set of exponential basis functions 

1 1

N N

i i i
i i

F w A
 

    
 
                 (4) 

where A denotes the amplitude of the waves, and i  denote 

the N basis function. The following von Mises basis 
functions are usually adopted for learning periodic motions:  

 1
1 cos( )

2
h c

i

i i
e

  
     (5) 

defined by their width h and the centers ci which are usually 
uniformly distributed within one period of the motion (e.g., 
in the range of - to ). The weights wi are adjusted to fit 
arbitrary nonlinear functions via locally weighted linear 
regression in either a batch mode or an incremental mode.  

The dynamical system (2) has a stable global attractor 

point at the baseline of the motions  1 2 0goalx x x    , 

and the nonlinear periodic force F in (4) produces limit cycle 
oscillators.  

III. PHASE WARPED TRAJECTORIES 

To learn a model of a demonstrated task, it is assumed 
here that several repeated demonstrations of the same task 
performed under similar conditions are available. An 
example of a set of multiple cyclic trajectories containing the 
same number of waving motions is shown in Fig. 1a. The 
trajectories were generated by manipulating a tool with 
attached optical markers. An optical tracking system 
Optotrak CertusTM [14] was used for measuring the position 
and orientation of the tool with a frame rate of 0.01 seconds. 
It is assumed that the motions simulate a task of painting a 
panel with a spray gun. 

When dealing with cyclic human demonstrated 
trajectories, the period of the motions is not constant due to 
the stochastic character of the human motions. It can be 
noticed in Fig. 1a that the period within each trajectory and 
between the individual trajectories is changing. On the other 
hand, in most of the works on dynamical systems in robot 
PbD, the fundamental frequency of the motion is first 
extracted (usually by Fourier transform approach, or even by 
applying a separate dynamical system for that purpose [8]), 
and afterwards, the first order differential equation (3) is 
used as a canonical system for the phase variable based on 
the extracted constant fundamental frequency . For human 
demonstrated cyclic motions, the constant rate of change of 
the phase does not correspond well to the actual phase 
change. One alternative in handling the different lengths and 
waving motions of the individual trajectories is to perform 
Fourier transform for each trajectory, and then to use 
different frequencies for the different trajectories. However, 
this will not compensate for the changes of the period within 
each trajectory. Another possibility is to scale or align the set 
of trajectories in order to have equal length. Among the 
approaches for aligning temporal data, dynamic time 
warping (DTW) [15] has often been used, based on reducing 
the norm of the squared differences between the trajectories. 
However, the distortion of velocities and accelerations 
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profiles of the trajectories caused by the nonlinear warping 
of the time flow renders DTW approach unsuitable for 
trajectories analysis with the dynamical systems. Another 
approach which has been used for this purpose is linear time 
scaling of the trajectories, based on different interpolation 
methods [16]. The drawback of the linear time scaling 
approach is the sub-optimal alignment of the trajectories. 

  
      (a)              (b) 

  
          (c)              (d) 

  

(e)              (f) 
Fig. 1. (a) Non-scaled positions for the demonstrated trajectory set; (b) 

Phase plot for one sample trajectory; (c) Phase vs time for one of the 
trajectories; (d) Phase vs time for the entire set of trajectories;  (e) Phase 
aligned trajectories; (f) Basis functions for one period of the first trajectory. 

 
In order to take into account the changing period of cyclic 

motion, we propose to use learning based on the 
instantaneous phase of the motion. Assuming that the 
trajectories considered in this work can be approximated by 
a sinusoidal waving pattern, the phase at each time instant 
can be found as 

( )
( ) 1

( ) ( )
tan

m
jm

j m m
j j

x

x






,  for m = 1, …, M ,   j = 1, .. ,Tm   (6) 

where ( )m
jx and ( )m

jx  are the position and velocity coordinates 

of the mth trajectory at the time moment j, ( )m
j  is the 

instantaneous frequency of the trajectories, M denotes the 
total number of trajectories, and Tm is the length of the mth 
trajectory. The instantaneous frequency ( ) ( )2 /m m

j j    is 

used here to scale the position coordinates, and it is found 
from the instantaneous time periods between the peaks 
across the trajectories in the demonstrated set. This 
parameter ensures that the phase plot of the system variables 

has a circular shape. For a set of 7 demonstrated trajectories 
shown in Fig. 1a, the plot of the scaled position versus 
velocity for one of the trajectories is shown in Fig. 1b. The 
phase evolutions for one sample trajectory and for the set of 
demonstrated trajectories are shown in Figs. 1cd for the 
phase range from  to -. Note that by using (6), the 
instantaneous phase is extracted directly from the 
demonstrated trajectories. The dynamics of the system at 
each time point will be anchored in the phase variable more 
accurately than when using a phase oscillator system with a 
constant rate of change of the phase as in (3). In addition, 
utilizing the instantaneous phase allows cyclic motions to be 
learned without the need for scaling or aligning the 
trajectories. For comparison, the phase aligned trajectories 
are shown in Fig. 1e. The phase information is also 
important for specifying the beginning and ending portion of 
the trajectories, i.e., the first period and the last period of the 
motions. Moreover, the distribution of the basis function is 
not uniform in the case when using the instantaneous phase, 
but it is adapted to the changing phase (Fig. 1f). 

  
(a)               (b) 

  

(c)                     (d) 
Fig. 2. (a) Phase for a constant period of the motions; (b) Positions, (c) 
Velocities, and (d) Accelerations for the reproduction trajectory with 
constant phase change. The demonstrated dynamics is shown with dashed 
(black) lines. 

 
For reproduction purposes, the desired frequency of the 

motions can be found from the task requirements. For 
instance, for a painting task, the desired period of the 
movements can be based on the knowledge of the tool 
diameter and the requirement to obtain uniform distribution 
of the paint. In the considered task example in Fig. 1, it is 
assumed that a constant period of 3.773 seconds will 
generate the best reproduction of the demonstrated task, and 
the phase oscillator in (3) was used for the generating the 
phase. The baseline and the amplitude of the motions were 
extracted from the peaks and valleys of the demonstrated 
waves. The length of the reproduction trajectory was set 
equal to the length of the 4th demonstrated trajectory. The 
coefficients in (2) were set to   = 10 and  = 2.5, the initial 
state was set to the means of the initial values of the 
demonstrated trajectories. For each trajectory, a set of 50 
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fixed basis functions (5) was obtained based on the 
instantaneous phase from (6). By concatenating the forces F 
and the basis functions i  from all trajectories, the 

weighting coefficients wi are calculated by linear regression 
in a batch mode. The phase evolution is shown in Fig. 2a, 
while the positions, velocities and accelerations for the 
reproduced trajectory with the system (2-5) are shown in 
Figs. 2bcd. 

IV. TRANSIENT PERIOD REPRODUCTION PROBLEM 

One shortcoming of the approach described in Section II 
is the errors produced by the dynamical system at the 
beginning of generating a reproduction behavior. During the 
transient period of the described mass-damper-spring 
system, the dynamical system converges towards the goal 
state (Fig. 3), which for the position coordinate is the 
baseline of the oscillatory movements. During the transient 
period, large velocities and accelerations are produced, 
which might not be possible to be achieved by the available 
robot (e.g., initial accelerations in Fig. 2d and Fig. 3c). The 
speed of convergence of the system is controlled by the 
gains  and  in (2) (which in this work were adopted as  
=10, and  = 2.5). If the transient response of the system is 
slowed down by adopting smaller values for the gains, then 
the velocities and accelerations could reach moderate values, 
however on the account of discrepancies between the 
demonstrated and reproduced motions. In this work, we 
propose an approach for learning cyclic motions, which does 
not suffer from errors in the transient period. 

  
 (a)            (b) 

  
  (c)            (d) 

Fig. 3. The dynamics of the damped spring system without periodic force is 
given with the solid line for: (a) Position, (b) Velocity, and (c) Acceleration; 
(d) The periodic force learned by the damped spring system. 

 
To avoid the unwanted high values of the velocities and 

accelerations in the starting period, we propose to use a 
dynamical system which consists of an undamped mass-
spring system 

ˆˆ ˆ ˆ( )goalx k x x F   ,     (7) 

during the transient period of the motions, and to switch to 
the dynamical system of mass-spring-damper (2) afterwards. 

The undamped mass-spring system is intrinsically 
oscillatory, and it governs the system dynamics to an 
oscillatory movement of the state x̂  with the natural 

frequency equal to k . For the considered system, the 
forcing term is found from the demonstrated motion 
dynamics     

( ) ( ) ( )ˆ ˆ ˆ( )m m m
goalF x k x x   ,   for m = 1, …,  M.    (8) 

Based on the approach described in Section III, the 
instantaneous phase is used for learning the force function 

( )ˆ m
jF  at each time instant j, and also the frequency term k in 

(8) is calculated based on the period extracted from the 
instantaneous phase in (6). 

 Unlike the damped spring system in (2) which converges 
toward the baseline of the cyclic motions, the proposed 
undamped system is an oscillatory system combined with a 
force function which captures the local changes of the 
waving motions. 

 For the first period the centers of the Gaussian kernels 
were distributed between the phase at the first time step 0 
and the end of the first cycle period for each trajectory m, 
i.e., 

 ( )( )
0ˆ ,mm

ic    , for i = 1, …, N,    (9) 

where N denotes the total number of basis functions used. 
Based on the functions ( )ˆ m

i , and the learned forcing terms 
( )ˆ mF  in (7), the weights ˆ iw  are calculated through linear 

regression in a batch mode:   

( ) ( )
,

1 1

ˆ ˆˆ
N N

m m
i i i m

i i

w F
 

    ,   (10) 

for  m = 1, …,M, and i = 1, …, N. 
The positions, velocities and accelerations for the first 

period of the motions reproduced by the undamped mass-
spring system for a period of 3.773 seconds are shown with 
the dashed (red) line in Fig. 4abc. Compared to the trajectory 
of a damped system, the acceleration does not have a spike 
at the beginning of the time. The resulting trajectories differ, 
since the undamped system was trained only on the data for 
the first period of the motion.  

It should be ensured that the transition from the undamped 
to the damped spring system given by (2) is smooth. 
However, for the damped system (2) the position coordinates 
have the desired values for the baseline of the motions when 
the phase is equal to 0 for each cycle, and the velocity reach 
the desired value of zero when the phase equals multiplies of 
/2, thus the system (2) will tend to generate high 
accelerations and velocities to reach these values. To 
overcome this problem here we considered the peak points 
of the motion as goal position coordinates goalx . In this case, 

at phases of /2, both the position and velocity will 
converge toward the desired values, i.e., goalx x  and 

0x  . Hence, the condition for the velocity equal to zero 
was adopted to switch from an undamaped spring system (7) 
to damped spring system (2), assuming that at that point the 
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position coordinate is approximately equal to goalx . The 

reproduction trajectory with the switching scheme is shown 
in Fig. 5. The transition occurs at the time equal to 1.78 
seconds, when the velocity value reached zero.  

  
(a)                (b) 

  
(c)                (d) 

Fig. 4. (a) Position, (b) Velocity and (c) Acceleration of the dynamical 
system reproduced with an undamped system (dashed red line) and with a 
damped system (solid blue line); (d) The force learned with the undamped 
system for the first period. 

 
(a)           (b)            (c) 

Fig. 5. Position, velocity and acceleration with a combination of an 
undamped spring system (7) and damped spring system (2). 

 
 (a)           (b) 

 
(c)                (d) 

Fig. 6. (a) Position plot for one of the trajectories with changing baseline 
and amplitude; (b) Position, (c) Velocity, and (d) Acceleration of the 
dynamical system reproduced with the damped system (2). 

 Fig. 6a shows one sample cyclic trajectory for a different 
task, where the baseline and amplitude of the trajectories is 
modulated after the first two periods, although the frequency 
of the waves remains approximately the same. A damped 

spring system for (2) was used for reproduction with the 
position, velocity, and acceleration shown in Figs. 6b-d. 
Although the system quickly adapted to the modulated 
waves, the change of baseline caused high accelerations and 
velocities, whereas the position was mostly correctly 
reproduced, except for the transition at the end of the 4th 
period. Fig. 7 shows the reproduced trajectories with a 
combination of undamped and damped systems. The first 
half-period, as well as the half-periods of transitioning to 
different baseline are reproduced by an undamped system. 
The high accelerations produced by the changing baseline in 
Fig. 6d have been avoided in this case. The spikes in 
accelerations that occur at the beginning of each period due 
to the learning with the damped system (2) can be avoided 
by adjusting the number and width of the basis functions, as 
a trade-off between the accuracy and smoothness of the 
reproduced trajectories. 

 
                           (a)          

 
                            (b)                (c) 
Fig. 7. Position, velocity and acceleration with a combination of an 
undamped spring system (7) and damped spring system (2). The parts of the 
trajectories between the vertical (green) lines have been reproduced with the 
damped spring system (2).  

V. TRANSLATORY COMPONENTS OF CYCLIC MOTIONS 

The motions considered in most of the works in the 
literature on learning repeated motions are closed 
trajectories, i.e., the trajectories ends up in the initial point at 
the end of each period. Here, we consider trajectories that 
are not closed. For instance, in the painting process the spray 
gun covers the part with paint but does not necessarily 
returns to the starting point. An example is shown in Fig. 8, 
where the motion of the tool in the plane of the panel is 
shown in Fig. 8a, whereas the horizontal (X) and the vertical 
(Y) coordinates in time domain are shown in Figs. 8bc. For 
the X-coordinate, the movement consists of a cyclic motion 
superimposed on a translatory motion. 

In this case the baseline of the movement represents an 
inclined line. To learn such motions, one alternative will be 
to calculate the median of the motions for each period, and 
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to use these values to specify the baseline at each period of 
the motion. This approach can cause high velocities and 
accelerations at the beginning of each period, due to the 
adaptation of the dynamic system to the new baseline (as it 
was noticed in Fig. 3). Therefore, more plausible solution is 
to fit a line through the peaks of the motion, in which case 
the baseline will be changing at each time instant. Positions, 
velocities and accelerations of the learned X-coordinate with 
a linear baseline by using the damped spring system (2) are 
shown in Fig. 9abc. As a consequence, there are 
discrepancies in the reproduced signal during the initiation 
stage, due to the adaptation step of the system (2). Fig. 10 
shows the reproduced trajectories with the initial half-period 
reproduced by an undamped system, and switching to a 
damped spring system (2) afterwards. The position 
coordinate in Fig. 10a follows the demonstrated motions at 
the beginning of the reproduction. The damped system can 
also be used to reproduce the ending part of the motions,   
which may deviate from the cyclic motions as is the case in 
this example set (Fig. 10b). 

 
(a)           (b)        (c) 

Fig. 8. (a) Demonstrated cyclic trajectories; (b) X-coordinate of the 
trajectories; (c) Y-coordinate of the trajectories.  

   
(a)          (b)             (c) 

Fig. 9. Position, velocity and acceleration of the X-coordinate from Fig. 8b, 
learned with the system (2). 

 
 (a)             (b) 

Fig. 10. (a) Position for the X-coordinate from Fig. 8b learned with a 
combination of an undamped spring system (7) and damped spring system 
(2); (b) Reproduced trajectory (solid red line) for the cyclic motion.  

VI. CONCLUSION 

Implementation of dynamical systems for learning cyclic 
motion has been studied in this work. Several modifications 
of the approach proposed by Ijspeert et al. [1] has been 
suggested, in order to implement this approach for 
transferring new skills to robots from human 
demonstrations. It is proposed here to extract the phase 
evolution directly from the demonstrations by using the 
instantaneous period of the motions, instead of working with 

the constant period which corresponds to the fundamental 
frequency of the motions. To reduce the high accelerations 
produced in the initial stage of the reproduction, an 
undamped spring system was proposed and implemented. 
Finally, cyclic motions superimposed on a translatory 
motion have been investigated and learned by using a linear 
time-changing baseline. The goal is to propose solutions for 
implementing the dynamical systems approaches in learning 
cyclic trajectories for industrial tasks. 
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