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1 Abstract 

Objective: The objective of the proposed research is to develop a methodology for modeling and evaluation of human 

motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke, or due 

to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a 

sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient’s exercises, will 

perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the 

analysis results to the patient’s physician with recommendations for improvement. 

Methods: The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and 

layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human 

motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and 

recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured 

sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data 

using a mixture of Gaussian distributions.  

Results: The proposed neural network architecture produced a model for sets of human motions represented with a mixture 

of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in 

evaluating the consistency of a subject’s performance relative to the reference dataset of motions. A publically available 

dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. 

Conclusion: The article presents a novel approach for modeling and evaluation of human motions with a potential 

application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the 

field of machine learning and neural networks in developing a parametric model of human motions, by exploiting the 

representational power of these algorithms to encode nonlinear input-output dependencies over long temporal horizons. 

 

Key words: physical rehabilitation, mathematical model, neural networks, autoencoder, mixture density network, 

performance metric, recurrent neural networks, time series 

 

2 Introduction 

Mathematical modeling of human motions is a research 

topic in several scientific fields, and subsequently it has 

been employed across a wide range of applications. 

Nevertheless, from a general point of view modeling of 

human motions remains a challenging problem, due to 

several aspects related to their intrinsic properties. First, 

human movements are inherently random, as a consequence 

of the stochastic nature of processing of the motory 

commands by the brain [1] (e.g., we cannot re-create 

identical movements or draw perfectly straight lines). 

Second, human motions have a highly nonlinear character, 

as all other processes in the nature. And third, the complex 

levels of hierarchy in the human reasoning are also 

reflected in the way the brain controls the limbs in 

executing desired motions.  

The proposed research aims to exploit the recent progress 

in the field of deep artificial neural networks (NN) for 

modeling of human motions. The motivation stems from 

the demonstrated potential of deep NN architectures to 

encapsulate highly nonlinear relations among sets of 

observed and latent variables, as well as the capacity to 

encode data features at multiple hierarchical levels of 

abstraction. These properties have been conducive to the 

development of efficient deep NN algorithms that in recent 

times outperformed other machine learning methods in a 

number of international competitions and applications [2, 

3]. However, this success has been largely based on the use 
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of convolutional NN that have proven suitable for dealing 

with spatial data, such as pixels in static images. On the 

other hand, human motion data possess quite a different 

structure due to the strong temporal correlation among the 

data points, and require different type of NN architectures. 

One such architecture designed for dealing with sequential 

data is the recurrent NN (RNN) [4]. More specifically, 

RNNs introduce recurrent connections between the 

neuronal activations of the neighboring units in sequences. 

The recurrence property establishes a basis for extracting 

the underlying temporal dependencies in sequential data. 

Unlike the current approaches for human motion modeling, 

such as Gaussian process model [5], hidden Markov models 

[6], dynamic movement primitives [7], or Kalman filters 

[8], which are based on short-term primarily linear 

approximation of the motion dynamics, recurrent NNs offer 

representational power for encoding non-linear motion 

dynamics over longer temporal horizons. 

The proposed work employs RNNs for developing a 

mathematical model of human motions, by extracting latent 

states of the motion sequences, related to sub-goals in 

executing the motion. To tackle the stochastic character of 

human movements, we propose a statistical modeling 

approach, based on the provision of multiple examples of a 

motion performed under similar conditions. The model 

aims to probabilistically encode the performed motion with 

a mixture of Gaussian probability density functions, by 

exploiting the variability across the motion examples. The 

network architecture consists of an autoencoder subnet [9] 

of LSTM neurons for dimensionality reduction of the 

observed motion data, and a mixture density network 

(MDN) [10] for modeling the conditional density function 

of the spatial coordinates, conditioned on the temporal 

coordinates of the motion. The obtained probabilistic model 

of the human motions is afterwards used for evaluation of 

newly observed motion sequences.  

3 Related Work 

3.1 Physical Rehabilitation  

Physical rehabilitation therapy is crucial for patients 

recovering from stroke, surgery, or musculoskeletal trauma. 

A study published by Machlin et al. [11] analyzed the 

Medical Expenditure Panel Survey generated by the US 

federal government, and indicated that in 2007 the cost of 

physical rehabilitation therapy in US was approximately 

$13.5 billion. These expenditures were incurred during 

approximately 88 million physical therapy episodes by 

nearly 9 million adults. 

The physiotherapist supervised treatments represent only 

a fraction of the total rehabilitation treatment; over 90% of 

the exercises are performed by patients in a home-based 

setting, also known as home exercise programs [12]. In this 

case, a physiotherapist instructs a patient on the type of 

physical exercises to be performed, and the patient is 

expected to perform the exercises, and continuously record 

their progress in a logbook. The patient will periodically 

attend follow-up visits with the physiotherapist, who 

evaluates their progress, and may prescribe a new set of 

exercises. However, there is a multitude of reports in the 

literature of low adherence rates to prescribed exercises in 

home-based rehabilitation, ranging between 11% and 40% 

[13, 14]. The poor compliance delays functional recovery, 

prolongs the rehabilitation period, and increases healthcare 

cost. 

Among the key factors contributing to low adherence to 

physiotherapy in outpatient environment is the lack of 

supervision, evaluation, and motivation for continued 

treatment [15]. Accordingly, the need for tools that support 

home-based rehabilitation has been widely recognized. The 

recent emergence of low cost non-intrusive motion capture 

sensors, such as Microsoft’s Kinect, stimulated a wave of 

research and proliferation of applications in this domain 

[16, 17]. KiReS (Kinect Rehabilitation System) [18] and 

VERA (Virtual Exercise Rehabilitation Assistant) [12] are 

examples of systems that employ a Kinect sensor for 

tracking a patient’s movements, and provide a graphical 

interface with avatars showing the desired exercise as 

prescribed by the physiotherapist and the current motions of 

the patient. Such visualization tools are conducive toward 

improved adherence to the prescribed physical therapy by 

allowing review of the exercises by the patients and 

correcting the performance, as well as by providing a means 

for remote review of the patient’s progress by the 

physiotherapist. 

A key prerequisite for monitoring and evaluation of 

patients’ progress in home exercise programs is the 

provision of efficient and comprehensive performance 

evaluation metrics. The existing clinical evaluation metrics, 

such as Fugl-Meyer assessment (FMA), Wolf motor 

function test (WMFT), and the ratio of optimal versus sub-

optimal motion execution [12, 18], were primarily designed 

for assessment performed by a physiotherapist. The 

development of performance evaluation metrics based on 

sensor captured motions in outpatient setting remains an 

open research topic. 

We hold that formalization of efficient evaluation metrics 

is predicated on congruent mathematical models for 

representation of human motions. In this work, we propose 

an approach for probabilistic modeling and evaluation of 

human motions based on the latest advances in artificial 

neural networks. 

3.2 NN for Motion Modeling 

The approaches for human motion modeling and 

representation are broadly classified into two categories: a 

group that uses latent states for describing the temporal 

dynamics of the movements, and another category that 

employs local features for representing the motion. Among 

the methods based on introduced latent states, the most 

prominent are Kalman filters, hidden Markov models [19], 

and Gaussian mixture models [20]. Main shortcomings of 
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these methods originate from employing linear models for 

the transitions among the latent states (as in Kalman filters), 

or from adopted simple internal structure of the latent states 

(typical for hidden Markov models). On the other hand, the 

approaches based on extracting local features within the 

motion data, e.g., key points [21], and temporal pyramids 

[22], are typically based on predefined criteria for feature 

representation which are often task-specific and defined at a 

single level of task abstraction. These attributes limit the 

ability of the feature class of motion representation methods 

to handle arbitrary spatio-temporal variations across the 

motion sequences in an efficient manner. 

The recent development in the field of artificial NNs 

stirred a significant interest in their application for 

modeling of human motions as well. The capacity for 

motion classification without the need for segmentation has 

been employed in several works. For example, Baccouche 

et al. [23] employed a convolutional NN for feature 

extraction fused with a layer of recurrent units for action 

recognition, and Lefebre et al. [24] implemented 

bidirectional RNN for gesture classification.  

Further, the replacement of simple RNN units with 

LSTM units mitigated the problem of vanishing/exploding 

gradients and provided a base for training deep RNNs. 

Subsequently, a body of work emerged that implemented 

deep NN for modeling of human motions. 

For examples, the approach by Du et al. [25] employs a 

deep RNN for hierarchical modeling of human motions, 

where input sequences consisting of skeletal joint positions 

of the human body are divided into five groups, related to 

the joints of the trunk and of the four body limbs. By fusing 

the input data of the five body groups progressively through 

the layers of neurons, the approach demonstrated high-

performance in classification of human motions. 

Another recent work [26] implements an encoder-

decoder network with recurrent LSTM units for extracting 

salient features in human motion sequences. The resulting 

encoded representation is afterwards successfully utilized 

for both motion generation and for body parts labeling in 

videos. 

In the work by Zhu et al. [27] the authors investigated the 

regularization in deep RNNs for human action recognition, 

and proposed 2 techniques for this purpose. One is based on 

learning co-occurrence features in the motion data across 

the layers of neurons, and another is a dropout technique 

applied on the gates within the LSTM units. The proposed 

regularization produces improved performance over the 

state-of-the-art methods. 

Jain et al. [28] developed a novel NN architecture that 

introduces spatio-temporal graphs in its structure. More 

specifically, the factor components in the st-graphs are 

grouped and modeled with RNNs. The framework is 

evaluated for prediction and generation of human actions, 

and for understanding human-object interactions.  

The above listed methods are employed for classification 

of human actions, or for predicting future motion patterns in 

a generative fashion, based on encoded joint distribution of 

the input data and the hidden states. The presented approach 

in this article employs RNNs for probabilistic modeling of 

human motions using density function estimation. To the 

best of our knowledge, such an implementation is novel and 

differs from the previous works on human motion modeling 

within the published literature. Several recent studies have 

successfully applied mixture density networks within an 

RNN framework to model complex datasets. For example, 

the work in [29] employed MDN and RNNs for 

classification and prediction of biological cell movement in 

different environments based on recorded motion 

sequences. Similar works reported application of MDN in 

modeling visual attention [30], wind speed forecasting [31], 

and acoustic speech modeling [32]. 

4 Problem Formulation 

The problem is related to a rehabilitation exercise 

prescribed by a physiotherapist to a patient by 

demonstrating the required motion in front of the patient. 

The demonstration can be either performed by the 

physiotherapist, or by moving patients’ limbs. It is assumed 

that the physiotherapist will demonstrate the motion 

multiple times (typically between 5 and 10 times), for the 

patient to understand the underlying range of movement of 

the different body parts. The patient is then asked to repeat 

the motion in a home-based rehabilitation environment a 

specified number of times in a daily session, or during 

multiple daily sessions. The goal of our research is to 

develop an algorithm for modeling the demonstrated 

motion and for evaluation of the performance of the patient 

during home rehabilitation in order to conclude whether the 

performed motions by the patient correspond to the 

prescribed motions by the physiotherapist.  

In practice, the physiotherapist may demonstrate the 

motion only once or twice, since our brains are excellent at 

pattern recognition, and we can easily generalize from only 

a single example of a task. On the other hand, machine 

learning algorithms are data driven and require multiple 

examples of a task to accurately extract underlying patterns 

in the data. Furthermore, the physiotherapist in reality will 

support the demonstrations by verbal explanations of the 

movements, and he/she can also demonstrate several 

incorrect examples of performing the motion. In the 

considered study, verbal explanations and non-optimal 

demonstrations are ignored, and the focus is on motion 

learning from perceived sensory data. The above scenarios 

can be considered as avenues for future work. 

It is assumed that a sensory system is available for 

capturing the demonstrated motion as prescribed by the 

physiotherapist. The number of demonstrated examples of 

the motion is denoted M, and the measurement by the 

sensory system for each of the demonstrated examples of 

the motion is denoted mO , where m is used for indexing the 

individual demonstrated examples. The set of observed 
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demonstrations comprises  
1

M

m m
 O . Also each 

perceived motion example mO  is a temporal sequence of 

high-dimensional sensory data, and it is denoted 
      1 2

, ,..., mT

m m m mO  o o o , where 
 1

mo  represents the sensory 

measurement at time 1t , i.e., the superscripts are employed 

for indexing the temporal position of the measurements 

within each motion sequence, and mT  denotes the number 

of measurements in each observed sequence. In general, the 

demonstrated examples will have different lengths, i.e., 

different number of measurements mT . Each individual 

measurement is a D-dimensional vector, hence the notation 

adopted is        , 1 , 2 ,
T

k k k k D

m m m mo o o 
 

o , where k is 

the current time step. The above notation employs bold font 

type for representing vectors and matrices. 

For example, let’s consider a motion that is demonstrated 

7 times by the physiotherapist. In that case, the set of 

demonstrated examples of the motion is  
7

1m m
 O

 1 2 3 4 5 6 7, , , , , ,O O O O O O O . Each motion is a time series 

representing a sequence of measurements by the sensory 

system. For instance, if an optical tracker collected the 

measurements at a rate of 100 measurements per second, 

and if the duration of the third motions was 4.2 seconds, 

then the sequence 3O  will consist of 420 measurements, 

and it will be represented as 
      1 2 420

3 3 3 3, ,..., o o oO , with 

1 0.01t s , 2 0.02t s , and 420 4.2t s . Furthermore, if the 

sensory system used 10 optical sensors for capturing the 

motions, and the outputs are 3-dimensional spatial 

coordinates of the optical sensors, each individual 

measurement will represent 30-dimensional data signal. In 

that case, the measurement 
 2

3o  of the third motion example 

at time step 2 will be the 30-dimensional vector 

       2 2,1 2,2 2,30

3 3 3 3

T

o o o 
 

o . 

Next, it is assumed that the same sensory system for 

motion perception is used to capture the motions of the 

patient during the rehabilitation exercises. Let’s denote the 

observation of the patient’s performed motion with R. 

Similar to the above notation, the motion sequence R will 

consist of RT  D-dimensional measurements 
 k

r , i.e., 

      1 2
, , ..., RT

 r r rR . 

The patient will attempt to reproduce the motion as 

demonstrated by the physiotherapist. Due to pain or other 

conditions, the patient may not be able to achieve the range 

of the motion as requested, or he/she may perform the 

motion in a wrong way due to a variety of reasons. The 

objective of the presented research is to evaluate the 

performance of the patient with regards to the 

physiotherapist demonstrated examples of the motion. Or, 

in other words, the objective is to evaluate how consistent 

patient’s motion R is with the reference motion set 

 
1

M

m m
 O . 

The problem was approached on the grounds of the fact 

that human motions are intrinsically stochastic. We cannot 

reproduce a motion in identical manner, due to the 

stochastic character of the motor actions as directed by the 

neural networks in the human brain. The variance within 

the human movements can be exploited to probabilistically 

model the motions. Using the observed set of examples of 

the motion provided by the physiotherapist , a 

probabilistic model of the motion will be derived described 

with a set of parameters λ . The parameters will be 

estimated by maximizing the probability of the observed 

data,  argmax λ . The probabilistic model will then 

be used for estimating the probability that the patient’s 

motion belongs to the distribution parametrically defined 

with λ , i.e.,  λR .  

The considered problem is an unsupervised learning 

problem, where the goal is to develop a probabilistic model 

of the observed data by determining the density estimation 

within a projected space with reduced dimensionality. The 

obtained model will be used to probabilistically evaluate 

new observations. 

5 Network Architecture 

The proposed network architecture is shown in Figure 1. 

Input to the network is a sequence of vectors related to the 

sensory perception of the motion . A recurrent layer of 

LSTM units encodes input sequences mO  into low-

dimensional sequences mZ . The sequences mZ  are decoded 

by another recurrent layer of LSTM units to the input 

context mO . The obtained low-dimensional sequences mZ  

are processed through another recurrent layer of neuron 

units, and the resulting sequences mY  are probabilistically 

encapsulated by a mixture of Gaussian probability 

distributions, parametrized with a set of means µ, standard 

deviations σ, and mixing coefficients π. The theoretical 

background behind the network architecture is presented 

next. 

5.1 Recurrent Neural Networks 

RNNs [4] are a subclass of neural networks that 

introduce recurrent connections between the neuron units. 

This type of NN has been designed for processing 

sequential data, such as time series, textual data, or DNA 

protein sequences. The recurrent connections between the 

neuron units enable capturing sequential (or temporal) 

dependencies across the input data.  
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Figure 1. The proposed network architecture, where the arrows 

denote the flow of data in the network. 

 

For an input sequence 
      1 2

, ,..., mT

m m m m o o oO  with 

length mT  consisting of an array of vectors 
 k

mo , where k 

denotes the position of the vector within the sequence mO , 

RNNs introduce a sequence of hidden states 
      1 2

, ,..., HT
 h h hH  that establish a mapping between 

the input and output data of the network. In temporally 

ordered sequences k would correspond to the time index tk 

of the input values. An RNN is graphically represented in 

Figure 2. The network structure is shown at the sequence 

level in Figure 2(a), as well as unfolded along the time steps 

1, 2, ..., 1, , 1,...k k k   in Figure 2(b). The connections 

between the consecutive neuron units  k
h , represented 

with the colored nodes in the figure, enable information 

about the input data to be shared with the neighboring 

neuron units. The recurrence furnishes the network with a 

memory capability, i.e., past observations can be employed 

for understanding the current observation, or for predicting 

future observations in a sequence.  

The outputs of the hidden unit vectors  k
h  in the RNN 

network presented in Figure 2 are calculated as  
      1k k k

oh m hh hf


  h W o W h b , (1) 

where Woh denotes the matrix of connection weights from 

the input vectors 
 k

mo  to the hidden layer units  k
h , Whh 

denotes the matrix of recurrent connection weights between 

the hidden layer units, bh denotes the vector of bias values, 

and f is an activation function. The hidden layer H will 

further be connected to an output sequence, or to another 

hidden layer in the network structure. The weight and bias 

parameters in RNNs are learned with the back-propagation 

through time (BPTT) algorithm [33], by minimizing a loss 

function over the set of training sequences  
1

M

m m
 O . 

 

 
Figure 2. Graphical representation of an RNN. (a) A sequence of 

input data mO  is connected to a sequence of hidden units H with 

recurrent connections between the hidden units. (b) The unfolded 

sequence mO  consists of observation vectors 
 k

mo  represented 

with white nodes, and the sequence H consists of hidden state 

vectors  k
h  represented with colored nodes. 

 

Two significant shortcomings of conventional RNNs 

presented in equation (1), are the inability to capture long-

term dependencies in the data, and the problem of 

vanishing/exploding gradients in learning the network 

parameters [34]. These are overcome by introducing special 

forms of recurrent neuron units, among which the most 

common are the LSTM units, which stands for long short-

term memory [35]. A graphical representation of an LSTM 

unit is given in Figure 3. The information processing in 

LSTM is characterized with the use of several gates which 

control the amount of information that is passing through 

the hidden units. Hence, each LSTM unit has an input gate, 

forget gate, and output gate. The gates are used for 

controlling the internal state of the LSTM unit stored in a 

memory cell. The memory cell accumulates information and 

carries it from the past to the future temporal states in the 

layer, thus enabling establishment of long term 

dependencies across the data sequence.  

Computations within the kth LSTM unit are as follows: 
      1k k k

oi m hi i


  i W o W h b  (2) 

      1k k k

of m hf f


  f W o W h b   (3) 

      1k k k

oq m hq q


  q W o W h b  (4)  

            1 1k k k k k k

oc m hc c
 

   c f c i W o W h b  (5) 

      k k k
tanhh q c  (6) 

where W’s denote the matrices of weight values, b’s denote 

the vectors of bias values, and σ and tanh denote a sigmoid 

and hyperbolic tangent functions, respectively. Similar to 

Figure 2, the notation 
 k

mo  and  k
h is related to the 

observed input vector and the output vector from the layer 

of hidden units at time tk, whereas  k
i ,  k

f ,
 k

q , and 
 k

c  

denote the corresponding activations of the input gate, 

forget gate, output gate, and the memory cell, respectively.  

At each time step k, the forget gate regulates the amount 

of the information in the memory cell that is discarded, the 

 

(a)                (b) 

mO  k

mo
 1k

m


o

 1k

m


o

 1

mo
 2

mo

 2
h

 1
h  1k

h
 1k

h
 k

hH
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input gate determines how much new information to store 

in the memory cell and pass it to the next units, and the 

output gate controls the fraction of the information in the 

memory cell to be output by the hidden unit. Furnished with 

the ability to retain and selectively pass information through 

the gates of an LSTM unit, the network can learn long-term 

temporal correlations within the data sequences.  

 

 
Figure 3. Graphical representation of the data flow within an 

LSTM unit. 

 

5.2  Autoencoder Neural Networks 

Autoencoders refer to an NN architecture designed to 

learn a different representation of a set of input data, 

through a process of data reconstruction [9, 36]. The intent 

is to extract useful attributes within the data, achieved by 

setting the network output to be equal to the original input. 

The step of transforming the input data to a different 

representation is called encoding, and analogously, the 

operation of reconstructing the data from its approximation 

is called decoding. 

A graphical representation of an autoencoder network is 

depicted in Figure 4. As shown in the figure, the network 

consists of an encoder portion which maps the input data 

 
1

M

m m
 O  into a code representation  

1

M

m m
 Z , and 

a decoder portion which reprojects the code  into the 

input . If the mapping function of the encoder is denoted 

:  , and the mapping function of the 

approximation by the decoder is denoted ˆ:  , the 

connection weights in the autoencoder network are learned 

by minimizing the reconstruction error formalized as 

  
2

,

ˆarg min
 

  .  

The majority of autoencoders employ a code 

representation with lower dimensionality in comparison to 

the input data. This forces the network to learn a sparse 

representation of the input data, and with that to extract the 

most salient attributes within the data to produce minimal 

reconstruction error. Due to these properties, typical 

application tasks of autoencoder NNs are dimensionality 

reduction, feature extraction, and data denoising.  

In this study on modeling of human motions, an 

autoencoder is employed to reduce the dimensionality of 

the observed sequences, since the dimensionality of the data 

in motion capture systems is typically in the range of 40 to 

60 measurements per time step. On the other hand, not all 

of the body parts are usually involved in performing a 

motion, and in addition, the movements of the individual 

body parts are highly correlated. Hence, projection of the 

measurement data to a lower dimensional space is helpful 

in extracting high-level features within the human motions, 

and facilitates the tasks of modeling and analysis of the 

motions. 

Regarding the dimensionality reduction using 

autoencoders, if the connection weights between the input 

and the hidden layers are linear, and mean squared error is 

used as a loss function, the network learns the principal 

components of the input data, and in this sense it operates 

as a PCA (principal component analysis) processor. The 

provision of nonlinear functions for neuron activations in 

autoencoders allows extracting richer data representations 

for dimensionality reduction. Furthermore, by stacking 

several consecutive encoding and decoding layers of hidden 

neurons, deep autoencoder networks are created, which can 

additionally increase the representational power capacity. 

 

 
Figure 4. Graphical representation of an autoencoder NN. 

 

5.3  Mixture Density Networks 

MDNs is a network architecture that employs a mixture 

of probability density functions in modeling dependencies 

in the input data [10]. Let’s assume input sequences 
      1 2

, ,..., mT

m m m mX x x x  and 
      1 2

, ,..., mT

m m m mY y y y  with 

length Tm consisting of d-dimensional vectors 
 k

mx  and 
 k

my

, respectively, which in general do not have to be ordered 

sequences. MDNs estimate the conditional probability 

density function  k k

m my x  for 1, 2, ..., mk T , as a 

mixture of probability distributions. 
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If Gaussian probability distributions are adopted as the 

mixture components, then the conditional probability 

density function is expressed as 

                2

1

,
L

k k k k k k

m m l m m l m l m

l

y x π x y μ x σ x , 

    for 1,2,..., mk T . (7) 

In the equation, L is the number of Gaussian mixture 

components, lπ  denote the vector of mixing coefficient of 

the Gaussian component l, and  2,y μ σ  denotes a 

multivariate Gaussian probability distribution with a mean 

μ and variance σ2. Note in equation (7) that the mixture 

parameters are dependent on the input vectors 
k

mx . 

The parameters in MDNs are estimated by minimizing a 

loss function defined by the negative log-likelihood of the 

input and output data.  

           2

1 1 1

ln ,
mTM L

k k k k

l m m l m l m

m k l  

 
   

 
 π x y μ x σ x . 

 (8) 

With regards to the requirement for the mixing 

coefficients 0l   and 
1

1
L

l

l




 , the connections in 

MDN leading to the mixing coefficients are defined as 

softmax functions of the corresponding network output 

activations ,la  , i.e., 

  
 

 

,

,

1

exp

exp

lk

l m L

l

l

a

a









π x . (9) 

For the standard deviations, the requirement 
2

l σ 0  is 

satisfied by employing exponential functions of the network 

activations as follow 
    ,exp
k

l m la σ x . (10) 

Lastly, the means are connected directly to the network 

activation by a linear projection layer 
   ,

k

l m a μ x . (11) 

The output parameters of the network can be used for 

estimating the conditional average of a data sequence nY  

given a sequence nX  as 

     
1

nT
k k

n n l n l n

k

    Y X π x μ x , (12) 

as well as the expected variance of the conditional density 

function as 

              

2

2

2

1 1

n

n n n n

T L
k k k k k

l n l n l n l n l n

k l 

       

 
  

 
 

 

Y Y X X

π x σ x μ x π x μ x

 

(13) 

6 Experiments 

6.1 Motion Perception 

The work assumes that a Microsoft Kinect sensor will be 

used for capturing the motions for rehabilitation exercises. 

With a price tag of around $150, its use for home-based 

rehabilitation is much more feasible, when compared to the 

optical trackers or other similar motion capture systems that 

cost tens of thousands of dollars. The Kinect sensor 

includes a color camera and an infrared camera for 

acquiring image (RBG) and range data simultaneously. The 

software development kit (SDK) for Kinect by Microsoft 

provides libraries for access to the raw RGB and depth 

streams, skeletal tracking, noise suppression, etc. The 

capability for skeletal tracking has been widely used for 

capturing human motions. The skeleton consists of 20 

points corresponding to the joints in the human body. 

During the skeleton tracking, the 3-dimensional position for 

each of the 20 joints is output at a rate of 30 frames per 

second.  

6.2 Dataset 

For proof of concept we used the publicly available 

dataset of human motions UTD-MHAD (University of 

Texas at Dallas – Multimodal Human Action Dataset) [37]. 

The UTD-MHAD dataset consists of 27 actions 

performed 4 times by 8 subjects. The data are collected 

with a Kinect sensor and a wearable inertial sensor, and is 

available in 4 different formats: RBG video, depth 

sequences, skeleton joint positions, and inertial sensor 

signals. Sample image for three of the actions: wave, 

bowling and draw circle, are shown in Figure 5.  

 

  

                   
(a)                        (b)                             (c)   

Figure 5. Sample images and skeletal representations for (a) 

Wave; (b) Bowling; and (c) Draw circle actions in the UTD-

MHAD dataset. 

 

6.3 Human Motion Modeling 

The motion related to the swipe left action from the UTD-

MHAD dataset is initially considered. The training set 
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consists of 21 recorded sequences, performed 3 times by 7 

of the subjects, i.e.,  1 2 21, , ..., O O O , and the testing 

set consists of 7 sequences performed once by 7 of the 

subjects  1 2 7, , ..., Q Q Q , where the sets  and 

are disjoint, i.e., Q  . The length of the training 

sequences varied between 48 and 72 time frames. Each 

measurement includes the x, y, and z spatial positions of the 

20 skeletal joints, i.e., the dimensionality of the vectors 
 k

mo  

is 60D  . In a preprocessing step the spatial joint 

positions were normalized to zero mean sequences, and to 

facilitate density estimation with a mixture of Gaussians, 

the sequences were temporally scaled and aligned to a 

constant length of 48 frames by using the dynamic temporal 

warping (DTW) algorithm [38].   

The network architecture shown in Figure 1 is employed 

for processing the input data . The code was 

implemented using the open-source Python libraries Theano 

[39] and Keras [40]. An autoencoder with recurrent layers 

of LSTM units is used for sequence-to-sequence 

processing. The code sequences are denoted   

 1 2 21, , ...,Z Z Z , as also shown in Figure 4. The encoder 

reduces the dimension of the input sequences mO  equal to 

60D   to dimension of the context mZ  equal to 3d  . 

The autoencoder is trained in a mini-batch input mode to 

minimize the reconstruction error   
2

,

ˆarg min
 

 

by using the AdaDelta gradient descent method [41] for 

updating the network parameters, whereas the gradients of 

the cost function are calculated with the BPTT algorithm 

[42].  

The trained network is afterwards used for reconstructing 

the testing set of data. Examples of two testing sequences 

mQ , the corresponding encoded sequences 
Q

mZ , and the 

decoded sequences ˆ
mQ , for  2, 4m , are shown in 

Figure 6. One can note that the sequences for the swipe left 

action include only movement of the right hand of the 

subject, and most of the other body parts are almost 

stationary during the motion. Therefore, many of the 60-

dimensional joint positions have values close to zero, and 

only several of the skeleton joints have varying position 

values during the motion. The encoded representation for 

the training sequences  1 2 21, , ..., Z Z Z  is shown 

superimposed on Figure 7. 

The sequences  are afterwards processed with an 

MDN network, depicted in Figure 1. As described in 

Section 5.3 the network is designed to learn mixture 

parameters encoding a conditional density function of the 

target data for given input data. The number or neurons in 

the layer connecting the output of the autoencoder network 

 and the MDN output is set of 100. The layer has fully 

connected nodes to the  set of sequences. Further, the 

number of Gaussian mixture components in the network is 

set to 4L  . The independent component of the input mX  

is related to the temporal ordering of the sequences, and the 

dependent component, or the target, mY , is related to the 

spatial position of the mZ  sequences. More specifically, the 

inputs to the MDN comprise arrays of time steps 

 1, 2, ..., 48m X  for all  sequences, and the targets 

are 
      1 2 48

, , ...,m m m m z z zY  for all  sequences, i.e., for 

1, 2,..., 21m  . The network estimates the parameters of 

Gaussian mixture components by maximizing the 

likelihood of the input data, which is commonly performed 

by minimizing the cumulative negative log-likelihood 

 m mY X  for 1, 2,..., 21m  . Contours of the negative 

log-likelihood for the three dimensional position sequences 

are shown in Figure 8. 

 

 
 

 

 
(a) (b) 

Figure 6. From top to bottom: (a) Testing sequence 2Q , encoded 

representation 2

QZ , and reconstructed sequence
2Q̂ ; (b) Testing 

sequence 4Q , encoded representation 4

QZ , and reconstructed 

sequence
4Q̂ .  

 

 
Figure 7. Encoded representation for all 21 training sequences. 

 

The obtained mixture parameters are dependent on the 

input, that is, for each input value k a conditional 



   

9 

 

probability distribution of the target 
 k

mz  is obtained given 

the value of the input k.  

The expected average and one standard deviation of the 

conditional density function for one of the target spatial 

dimensions is shown in Figure 9 for the case of 4 and 8 

mixture components.  

The Gaussian mixture parameters provide a probabilistic 

description of the average values and the underlying 

variability of the motion, as a function of its temporal 

evolution. The resulting parameterized density function is 

employed as a spatio-temporal model for evaluation of 

other motions. 

 

 

 

 
Figure 8. Contours of the conditional density functions for the 

three spatial coordinates of the target sequences, shown with green 

scattered markers. 

 

6.4 Evaluation 

Based on the learned model of a motion presented in the 

previous section, the next step is to evaluate a new motion 

sequence, presumably performed by a patient during a 

home-based rehabilitation therapy. The sequence is denoted 
      1 2

, , ..., RT
 r r rR . 

One possible metric for evaluation of the sequence R 

with regards to the probabilistic model described with the 

MDN parameters  
1

, ,
L

l l l l
λ π μ σ  is the mean log-

likelihood of the sequence given the model parameters 

 R  λR , calculated as 

           
3

, 2

1 1 1

1
ln ,

RT L
k k d k k

R l l l

d k lRT   

 
  

 
 π t r μ t σ t  

(14) 

where 
 k

t  is the sequence of time step indices of the spatial 

positions of the sequence R.  

 

 

 
Figure 9. Expected average and one standard deviation of the 

density function for 4 mixture components (upper figure) and 8 

mixture components (lower figure). 

 

The mean log-likelihood for the 21 training sequences are 

shown with the blue line in Figure 10. The mean log-

likelihood was also calculated for observed sequences 

corresponding to other motions in the dataset, such as swipe 

right, waving, and clapping, and are shown with red lines in 

Figure 10. As expected, the sequences that are not produced 

by the swipe left motion, are less probable to fit within the 

density probability function described with the λ

parameters. 

 
Figure 10. Mean log-likelihood for sequences from 4 different 

actions. The results related to the action swipe left used for 

training are shown with the blue line, and the results related to 

other actions are shown with the red lines. 

 

Since the UTD-MHAD dataset does not provide 

examples of sub-optimal motions, such examples are 

synthetically generated here by adding random noise to the 

training data, for a proof of concept. Thus, several levels of 
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uniformly distributed noise is added to the training 

sequences, and afterwards, the mean log-likelihood is 

evaluated. The result is presented in Figure 11. The levels 

of noise added are: 0.01, 0.1, 0.2, 0.4 and 1. The original 

sequences without added noise are shown with the blue line 

in the figure. As more noise is added to the motion 

sequences, the log-likelihood decreases. For the noise of 

0.01 shown with the red line in the figure, the difference 

with the original sequence is very small, since that level of 

noise is similar to the measurement noise within the sensory 

data. As expected, the sequences with added noise deviate 

from the original sequences that were used to develop the 

motion model, and their likelihood to belong to the 

probability density function is smaller. 

In a similar manner, motion sequences performed by a 

patient can be compared to a model of the motion as 

demonstrated by the physiotherapist. The mean log-

likelihood can be used to assess the performance of the 

patient. As the patient continues with the rehabilitation 

therapy, the metric can be used to indicate whether there is 

a progress toward the prescribed motion. 

 
Figure 11. Mean log-likelihood for the swipe left action. The 

original sequences are shown with the blue line, and the sequences 

with added noise are shown with different line colors. 

7 Summary 

The article presents an approach for modeling and 

evaluating human motions using artificial neural networks. 

The network architecture consists of two subnets: an 

autoencoder and a mixture density subnet. The autoencoder 

employs layers of recurrent neuron units for dimensionality 

reduction and extraction of low-level features within the 

motion sequences, thus transforming noisy, high-

dimensional datasets with strong correlations into a lower-

dimensional dataset with low noise. The MDN portion of 

the network is used for density function representation of 

the motions with a mixture of Gaussian probability 

distributions. The output of the network is a probabilistic 

model of the human motions represented with a set of 

mixture parameters and a set of network connection 

weights. 

The model is intended to be employed for evaluation of a 

patient performance in a home-based physical rehabilitation 

therapy. The probabilistic character of the proposed model 

allows employing statistical metrics for evaluation of 

patient’s performance. In this study, the probability, 

calculated as the mean log-likelihood of the motions 

performed by the patient, that the motions are drawn from 

the density function of the reference model, is adopted as a 

performance evaluation metric. For proof of concept, 

motion sequences from the available dataset have been 

distorted by adding random noise, and afterwards the mean 

log-likelihood is evaluated using the model parameters, and 

compared to the training set of motions. 
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