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Abstract

Gland segmentation is a critical step to quantitatively
assess the morphology of glands in histopathology image
analysis. However, it is challenging to separate densely
clustered glands accurately. Existing deep learning-based
approaches attempted to use contour-based techniques to
alleviate this issue but only achieved limited success. To
address this challenge, we propose a novel topology-aware
network (TA-Net) to accurately separate densely clustered
and severely deformed glands. The proposed TA-Net has
a multitask learning architecture and enhances the gener-
alization of gland segmentation by learning shared repre-
sentation from two tasks: instance segmentation and gland
topology estimation. The proposed topology loss com-
putes gland topology using gland skeletons and markers.
It drives the network to generate segmentation results that
comply with the true gland topology. We validate the pro-
posed approach on the GlaS and CRAG datasets using three
quantitative metrics, F1-score, object-level Dice coefficient,
and object-level Hausdorff distance. Extensive experiments
demonstrate that TA-Net achieves state-of-the-art perfor-
mance on the two datasets. TA-Net outperforms other ap-
proaches in the presence of densely clustered glands.

1. Introduction

In histopathology image analysis, evaluating gland mor-
phology is crucial to determine stages of several cancers,
e.g., colon cancer [11], breast cancer [3], and prostate
cancer [16]. Conventionally, pathologists examine gland
morphology to assess the malignancy degree using mi-
croscopes; and the whole process is time-consuming, ex-
pensive, and prone to human errors. Recently, with the
availability of whole slide images (WSI), digital pathology
has been achieving popularity by developing computational
tools to aid routine tasks. Automatic and accurate gland seg-
mentation is often required before calculating gland mor-
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Figure 1. Hematoxylin and Eosin (H&E) stained histopathology
images with labeled (yellow contours) glands. The first row shows
healthy glands, the second row shows malignant glands. Noted
that the malignant glands are close their neighboring glands and
appear in deformed shapes.

phology. However, the task is challenging due to the large
morphological differences among glands and large number
of clustered glands (Figure. 1).

Early approaches for gland segmentation focused
on applying knowledge of glandular structures, e.g.,
morphology-based methods [19, 21], and graph-based
methods [30, 9]. These methods achieved promising per-
formance on low-grade adenocarcinoma; but they failed
in many malignant cases. Malignant glands continue to
grow and invade the adjacent tissues or metastasize (Figure
1); therefore, they cluster densely and their shapes deform
severely in histopthology images. Recently, deep learning-
based methods provide state-of-the-art performance in
many computer vision tasks [1, 6] and biomedical image
analysis tasks [24]. Chen et al. [5] proposed an FCN-based
multitask learning network to generate gland regions and
contours simultaneously. The complementary contour in-
formation helped separate clustered glands. Xu et al. [33]
developed a deep three-channel network (instance, contour,
and location) to jointly separate the clustered glands. Gra-
ham et al. [12] proposed the MILD-Net that utilized both
instance and contour segmentation; and MILD-Net also in-
volved multi-level aggregation, atrous spatial pyramid pool-
ing block, and dilated convolutional design. Qu et al. [22]
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(a) Image patch (b) Ground truth (c) DCAN[5]

(d) SegNet[1] (e) MicroNet[23] (f) TA-Net

Figure 2. A segmentation example of densely clustered glands.
Colors are used to differentiate different glands. The white dash
rectangles highlight the poorly-separated glands.

proposed a full-resolutional network that outputs three-class
probability maps (instance, contour and background). The
strategy shared by all the above methods is to use gland
contour information to separate clustered glands. However,
these approaches achieved limited success. A segmenta-
tion example of densely clustered glands is shown in Fig-
ure. 2, SegNet, DCAN, and MicroNet failed to separate
close glands.

Three major challenges exist in gland segmentation us-
ing contour information: 1) The contour strategy fails when
glands are densely clustered, because overlapped glands
share contour sections. Usually, in a glandular structure, ep-
ithelial nuclei form a gland border. In practice, digital WSI
scanner flattens gland tissues into a near two-dimensional
histopathology slice, and two or multiple glands cluster to-
gether will not have a regular and clear epithelial nuclei bor-
der. Note the red arrow in Figure. 3(a), the clustered regions
do not have regular epithelial nuclei. 2)The coarse annota-
tions of the contours introduce noise and reduce the effec-
tiveness of the contour strategy. A gland tissue in a 20 ×
magnification could be 1k × 1k pixels wide and height, and
it is difficult to annotate all contour pixels correctly. Ex-
isting datasets in the literature still have many annotation
issue (Figure. 3(b)). 3) It is difficult to identify the contours
of malignant glands accurately. Because malignant glands
continue to grow and become deformed. their components
appear distorted. The green arrows in Figure 3(c) indicate
the distorted boundary of a malignant gland.

In this paper, we introduce a new strategy that utilizes
gland topology to separate densely clustered glands. The
gland topology is characterized by the gland’s topological
skeleton, which differentiates clustered glands better than
gland contours. Furthermore, the gland topology is more

(a) Lack of regular contour on densely clustered glands

(b) coarsely annotation

(c) lack of texture and color information on malignant glands

Figure 3. Issues of segmenting densely clustered glands by using a
gland contour annotation. Left column shows the histopathology
image patches; right column shows the image patches with the
labeled gland contours (yellow).

reliable than contours in the presence of noisy annotations.
This work has two major contributions: 1) we propose a
topology-aware network that learns shared representation
for simultaneously instance segmentation and gland topol-
ogy estimation. The topology branch of the network pre-
dicts the Medial Axis [4] distance map to describe gland
topology. 2) We propose a new topology loss by using the
Medial Axis distance map and gland markers. The loss pe-
nalizes the topology difference between segmented glands
and the true glands, which forces the network to generate
segmentation results that adhere to the gland topology.

2. Related Work

2.1. Histopathology Gland Segmentation

Histopathology gland segmentation aims to segment the
gland tissue from the Hematoxylin & Eosin (H&E) stained
histopathology image. Recently, deep learning (DL)-based
method successfully demonstrate the robustness and effi-
ciency in the literature. Raza et al. [23] proposed the
MicroNet that inputs the multiple resolutions of images
patches at different down-sampling stages for better local-
ization and context information and back-propagates the re-

1557



sults by using multi-resolution outputs. Ding et al. [8] pro-
posed a multi-scale Fully convolutional network to extract
different receptive field features at different convolutional
layers. These studies, as well as those described in the pre-
vious section [5, 33, 12], build up a deep architecture for
segmenting the gland instance and contours. Yan et al. [34]
proposed a shape-aware adversarial learning network that
integrates a deep adversarial network and a shape-preserve
loss. Qu et al. [22] proposed a spatial loss for recognizing
the glands. The proposed loss placed a spatial constraint on
the boundary pixels and forced the network to learn gland
shapes.

2.2. Topology Aware Networks

Different Topology aware networks have been proposed
in various natural image segmentation [7, 10, 17] and
biomedical image segmentation tasks [13]. Hu et al. [13]
introduced a loss function that make the segments have the
same Betti number as the ground truths for the topologi-
cal correctness; and the method utilized the topology infor-
mation to make the corrections on some biological struc-
tures, e.g., broken connection. Clough et al. [7] pro-
posed a method that integrated the differentiable properties
of persistent homology into the network training process;
the network extracts useful gradients even without ground-
truth labels. Shit et al. [26] introduced a centerlineDice
that measured the topological similarity of the segmenta-
tion masks and their skeleta. Mosinska et al. [17] con-
structed a loss that models higher-order topological infor-
mation. These methods employed the regional topological
constraints, e.g., the connectivity and loop-freeness. How-
ever, these methods are hard to generalized to other objects
without linear structures, e.g., blood vessels, retinas, cracks,
and roots. In this work, we introduce a new topology-aware
network to preserve the topological skeletons of glands,
which can be easily reproduced to objects with irregular
shapes ans the overlapping issue.

2.3. Medial Axis (MA) Transform

The MA/topological skeleton of an object is the set of
all inner points that have more than one closest point on the
object’s boundary. The MA transformation was firstly in-
troduced in [4] for shape recognition; and it is well-known
as the locus of local maxima with distance transformation.
The MA transform is a powerful tool for shape abstraction,
and provides a shape representation that preserves the topo-
logical property of skeleton structures; these property are
invariant to crop, rotation and articulation, and robust to the
overlapped and clustered objects. Recently, many studies
applied medial axis transforms in different computer vision
tasks, e.g. segmentation [20], shape matching [28], recog-

nition [25], image reconstruction [31], and body tracking
[27]. In a densely clustered gland region, different glands
may contain different skeletons. The skeleton structure may
assist to distinguish the densely clustered glands. However,
to the best of our knowledge, no studies have employed MA
transform in histopathology image analysis.

3. Topology-Aware Network for Gland Seg-
mentation

Figure. 4 illustrates the architecture of the proposed TA-
Net. It is a deep multitask neural network and aims to en-
hance gland segmentation by learning shared representation
from two tasks: gland instance (INST) segmentation and
gland topology (TOP) estimation. The first task extracts
glands from the background. The second task learns gland
topology to separate clustered glands.

3.1. TA-Net Architecture

The proposed TA-Net has one encoder and two decoder
branches. The first decoder predicts foreground map for
glands (INST); and the second decoder learns the topology
information of glands (TOP). Two decoders share the same
feature maps from the encoder. SegNet [1] is utilized as
the backbone architecture due to its state-of-the-art perfor-
mance on gland segmentation [12, 29] comparing with the
existing benchmark networks, e.g., U-Net [24], FCN8 [15],
and DeepLab [6]. Meanwhile, dense-connected blocks [14]
are applied to the decoders to ensure the large receptive field
for detecting the instances over wider areas in images. In
the proposed network, the two decoders have the same ar-
chitectures except for the final output layers. The INST de-
coder ends with a 2 by 2 convolutional layer and follows
a softmax activation layer; and the TOP decoder ends with
a 1 by 1 convolutional layer for outputting the meidal axis
distance map.

In the encoder, three convolutional layers and the fol-
lowing maxpooling layer forms a downsampling convolu-
tional block. In total, there are five downsampling blocks.
In the decoder, there are five upsampling blocks that con-
tains different numbers of stacked densely connected layers
and convolutional layers. Different from the standard Seg-
Net encoder architecture, there has three convolutional lay-
ers in the first two downsampling blocks aim at extracting
more fundamental features. In TA-Net, all convolutional
kernels are 3×3, and the numbers of kernels of for the con-
volutional layers in each block are the same. The numbers
of convolutional kernels from blocks 1 to 5 in the encoder
are 64, 128, 256, 512, and 512, respectively. In the two de-
coders, the numbers of kernels from blocks 1 to 5 are 512,
512, 256, 128, and 64, respectively; and the numbers of
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Figure 4. The architecture of the proposed network. The architecture takes image patches as input and outputs the gland instance (INST)
map and medial axis (MA) distance map. The marker map is generated using the MA map.

stacked densely-connected layers are 8, 8, 8, 8, 4, 4, and 4,
respectively.

The loss function of TA-Net. As shown in Figure. 4, the
proposed TA-Net’s loss function has two terms: the instance
loss (LINST ) and the topology loss (LTOP ). The total is
defined by

LTA−Net = LINST + α · LTOP (1)

where α denotes the contribution of the topology loss. The
loss LINST is the cross-entropy (CE) loss on gland in-
stances map for segmenting the foreground gland instances
from the background. The loss LTOP is discussed in Sec-
tion 2.2, α controls the contribution of the LTOP loss.

3.2. Topology Loss

The proposed topology loss is given by

LTOP = LMA + LMC (2)

where LMA is computed using the medial axis distance
map to preserve the geometry of glands, and LMC uses
markers in glands to avoid over-segmentation and under-
segmentation.

Medial Axis (MA) Distance Map. The MA/topological
skeleton of an object is the set of all inner points that have
more than one closest point on the object’s boundary. It
is well-known as the locus of local maxima with distance
transformation. In this work, we employ the MA-based dis-
tance map to model the topological property of glands. Let
G = {Gi}ni=1 be a set of glands in an image patch, and n
be the number of glands. For every gland from G1 to Gn,
the MA transformation iterates the one-pixel morphologi-
cal erosion process starting through the gland contour. The
topological skeleton of a gland (Fig. 5(c)) is a set of points

(a) (b) (c) (d)

Figure 5. Examples of Medial axis (MA) transformation. a) A
histopathology image patch with labeled (yellow contours) clus-
tered glands; b) the binary annotation of gland regions; c) the topo-
logical skeletons of glands, noted that skeletons are morphological
dilated to be visible; and d) the MA distance map.

having more than one closest point on a gland’s contour;
and the skeletons are one-pixel width and follow the same
connectivity as the original gland shape. The number of it-
erations from a gland’s contour to the topological skeleton
is normalized to form the MA distance map. The MA dis-
tance map value at point pj is defined by

MA(pj) ={
d(pj)

max∀pk∈Gi
{d(pk)}−min∀pk∈Gi

{d(pk)} , if∃Gi ∈ G, pj ∈ Gi

0, otherwise
(3)

where d(pj) is the number of erosion iterations from point
pj to the corresponding skeleton.

Examples of the MA distance map is shown in Figure.
5(d). As shown in Figure. 5(a), it is challenging to sepa-
rate the clustered glands; however, in Figure. 5(c) and (d),
the skeleton and distance map emphasize the geometrical
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and topological properties of each gland, and clearly sep-
arate all clustered glands. Eq.(3) and the MA transforma-
tion are applied to generate the ground truth for the MA
distance map. To ensure that the proposed gland segmenta-
tion network preserves gland topology, we design the sec-
ond decoder branch to predict the MA distance map. The
loss function LMA is defined by

LMA =
1

m

m∑
j=1

(MA(pj)− M̂A(pj))
2 (4)

where M̂A denotes the predicted distance map, and m is the
number of image pixels.

Marker loss. The Watershed algorithm is commonly ap-
plied as a postprocessing step to produce the fine segmenta-
tion, especially separating the clustered objects. The water-
shed markers represent the number and locations of objects,
and are critical for accurate segmentation. More mark-
ers lead to over-segmentation, and fewer markers produce
under-segmented results. We introduced the marker loss
to separate clustered glands and prevent over-segmentation.
The marker loss is defined as the Dice loss between pre-
dicted marker map (M̂C) and the true marker map (MC)

LMC = Dice(MC, M̂C) (5)

The predicted marker map is generated by thresholding the
outputs from the medial axis distance map.

4. Experimental Results

4.1. Datasets and Evaluation Metrics

Datasets. The Colorectal adenocarcinoma gland
(CRAG) dataset [12] and the Gland Segmentation challenge
(GlaS) dataset [29] are used in this work. CRAG has 213
HE-stained histopathology images from 38 WSI images.
The scanned image size is 1512 × 1516 pixels with the
corresponding instance-level ground truth. The training set
has 173 images and the test set has 40 images with differ-
ent cancer grades. The GlaS dataset has 165 H&E-stained
histopathology images extracted from 16 WSI images. The
image size mostly is 775 × 522 pixels. The training set has
85 images (37 benign and 48 malignant). The test set is split
into two sets: Test A (60 images) and Test B (20 images),
because two test sets are releases in different stages in GlaS
challenge. Both datasets are scanned with a 20× objective
magnification. The CRAG dataset has more densely clus-
tered glands.

Evaluation Metrics. We use the F1-score, object-
level Dice coefficient (Obj-D), and object-level Hausdorff
distance (Obj-H). In the F1 score, a segmented gland is
counted as a true positive if it has 50% overlap with the

ground truth, and counted as a false positive (FP) if other-
wise; and all missed glands in the ground truth are counted
as false negatives. Refer to [29] for detailed descriptions of
the Obj-D and Obj-H in Colon Histology Images Challenge
Contest (GlaS) at MICCAI 2015.

4.2. Implementation Details

The TA-Net is trained and tested using a deep learning
server with an NVIDIA Quadro RTX 8000 GPU, 512 GB
memory, and two 2.4 GHz Intel Xeon 4210R CPUs.

The patch size of the GlaS dataset is 512 × 512 pixels,
and the patch size of the CRAG dataset is 768 × 768 pixels.
Different patch sizes are applied because 1) the two datasets
have images with different sizes; and 2) larger patches im-
prove the performance on segmenting white lumen regions
inside the gland tissues. The larger patches could generate
the whole white lumen region in the gland in one patch. The
GlaS dataset generates 340 training patches and 320 test
patches. The CRAG dataset generates 692 training patches
and 160 test patches. The augmentation approaches, e.g.,
random flip, random rotation, Gaussian blur, and median
blur, are utilized in the training stage. The segmentation
results of image patches are merged to form images of the
same size as the original images.

The training epoch is set as 200, and the initial learning
rate for the Adam optimizer is set as 10-4 and is reduced to
10-5 after 100 epochs. The batch size is 4 for training the
model.

The postprocessing applies the Watershed algorithm to
produce the final output. We apply a threshold value to
the outputs from the instance branch (INST) to generate the
glands binary map, and utilize it as the Watershed filling
region. The output from the MA distance branch are the lo-
cal elevation of those glands. Further, thersholding the MA
distance map to generate the Watershed markers. Morphol-
ogy operations, e.g., fill the holes, remove the small objects
are utilized to generate a fine glands regions and makers.
In the end, the generated gland region, gland elevation and
markers are input to Watershed algorithm for fine gland seg-
mentation results.

4.3. Results and Discussion

In this section, we discuss the overall performance of our
method, followed by the results using the contour map, and
single-task/multitask networks. Finally, we discuss the per-
formance of our network on different distance-metrics.

Overall performance. We compare the proposed
method with nine recently published approaches using the
GlaS dataset and six approaches using the CRAG datasets.
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Datasets Methods Year F1(%)↑ Obj-D(%)↑ Obj-H↓
GlaS SegNet[1] 2016 83.1 84.9 76.6

DCAN[5] 2016 81.4 83.9 102.9
DeepLab[6] 2017 83.7 84.5 80.5
MILD-Net[12] 2019 87.9 87.5 73.7
Micro-Net[23] 2019 86.5 87.6 70.4
FullNet[22] 2019 88.9 88.5 63.0
DSE[32] 2019 89.4 89.9 55.9
MSFCN[8] 2020 89.3 89.9 53.1
Yan et al.[34] 2020 90.7 89.3 58.7
TA-Net 2021 90.5 90.2 50.8

CRAG SegNet[1] 2016 77.4 85.3 134.7
DCAN[5] 2016 73.6 79.4 218.8
DeepLab[6] 2017 64.8 74.5 281.4
MILD-Net[12] 2019 82.5 87.5 160.1
DSE[32] 2019 83.5 88.9 120.1
MSFCN[8] 2020 82.5 89.2 130.4
TA-Net 2021 84.2 89.3 105.2

Table 1. Overall segmentation performance on GlaS and CRAG datasets.

Datasets Methods F1(%)↑ Obj-D(%)↑ Obj-H↓
GlaS Ours-INST 86.4 88.3 65.4

Ours-MA 80.2 84.2 105.8
Ours-CNT 89.1 88.2 54.4

TA-Net 90.5 90.2 50.8
CRAG Ours-INST 78.9 86.1 125.6

Ours-MA 74.8 80.3 200.8
Ours-CNT 81.3 85.8 164.5

TA-Net 84.2 89.3 105.2

Table 2. Ablation study on multitask learning and decoders

We implemented [1, 6, 5] by following the same strategies
in the original papers and the rest of other results are cited
from their original papers. The test performance of GlaS
dataset is reported as the average performance on its test
A and test B sets. We employed F1-score, object-level Dice
coefficient (Obj-D), and object-level Hausdroff (Obj-H) dis-
tance to measure the overall performance.

Table 1 shows the test performance of different ap-
proaches on two public datasets. The proposed TA-Net
outperforms all other methods on CRAG datasets in terms
of the F1 score, Obj-D; and achieved the best results in
Obj-D, Obj-H and the second-best results in F1-score on
GlaS datasets. The GlaS dataset has a small number of
densely clustered gland regions; therefore, comparing with
the second-highest result (Yan et al. [8]), TA-Net is only
slightly better, e.g. 4.3% improvement of the Obj-H. The
CRAG dataset has more densely clustered glands, and our
method improves the Obj-H significantly (19.3%). Figure.
6(d) demonstrates that TA-Net separates densely clustered
glands accurately.

MA distance map vs. contour map. We compared

the proposed TA-Net with a multitask network (Ours-CNT)
which has the same architecture as TA-Net but outputs the
gland instance map and the gland contour map. The only
difference between the two networks is that TA-Net uses
the MA distance map, while Ours-CNT uses the gland con-
tour map as the ground truth of the second decoder. As
shown in Table.2, TA-Net comparing to the Ours-CNT, Obj-
H has been improved by 5.7% and 35% on the GlaS and
CRAG datasets, respectively. The results demonstrate that
the network using the MA distance map generates more ac-
curate gland contours than the contour map based network,
especially on the CRAG dataset. Fig. 6 demonstrates that
contour map-based strategy fails to separate many clustered
glands (in dashed rectangles).

Multitask network vs. Singletask network. In addi-
tion, we comparing the proposed multitask learning net-
work with the single task learning network, which outputs
the binary instance branch only (Ours-INST), and MA dis-
tance branch only (Ours-MA). In experiment of the Ours-
INST, the Watershed algorithm is applied in the postpro-
cessing for separating the clustered glands. In experiment
of MA distance branch, we outputs the MA distance branch
only. In the post-processing, we utilized the thresholding
to produce a binary gland region map, and gland markers.
Then, the Watershed is used to produce the final segmenta-
tion. From the Table. 2, we noted that the designed multi-
task learning network outperform one task networks (Ours-
INST, Ours-MA). Integrating both gland instance and MA
distance map will produce a reliable performance in gland
segmentation.

W/ or w/o the marker loss. The proposed TA-Net is
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(a) Original Images (b) DCAN (c) Ours-CNT (d) TA-Net (e) Ground Truth

Figure 6. Segmentation results of five image patches (top three from CRAG, bottom two from GlaS). Different colors represent different
glands. Yellow dash region highlighted the clustered gland regions.

Datasets Methods F1(%)↑ Obj-D(%)↑ Obj-H↓
GlaS Ours-WoM 90.2 89.8 54.4

TA-Net 90.5 90.2 50.8
CRAG Ours-WoM 83.7 89.1 108.6

TA-Net 84.2 89.3 105.2

Table 3. Ablation study on marker loss

compared with the same network without the marker loss
(Ours-WoM). Table. 3. shows the results on two public
datasets. From the quantitative results, we noted that the
marker loss only improves the overall performance slightly
on both two datasets. But we observed that the marker loss
alleviates the over-segmentation and under-segmentation
problems in clustered glands and deformed glands in many
qualitative cases (Fig. 7).

(a) Images patch (b) Ground truth (c) Ours-WoM (d) TA-Net

Figure 7. Examples of the effectiveness of the marker loss.

Comparison on various distance map. Deep
Watershed-based regression algorithms provide the suc-
cessful demonstration to separate the occluded objects and
overlapped objects [2]. Most related method to ours is by
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Datasets Metrics F1(%)↑ Obj-D(%)↑ Obj-H↓
GlaS Euclidean 82.4 78.7 65.4

Chessboard 86.4 83.4 71.2
MA 90.2 89.8 54.4

CRAG Euclidean 76.5 81.2 257.5
Chessboard 80.8 85.9 178.9

MA 83.7 89.1 108.6

Table 4. Ablation study on different distance metrics on CRAG
dataset.

Naylor et al. [18], which proposed a chessboard distance-
based deep regression network for nuclei segmentation.
First, comparing to their U-Net shape architecture, we
employed the multitask learning-based Densely connected
SegNet. We achieved promising performance in segment-
ing the gland foreground from the background. Second, the
Medial Axis distance map preserve the topological property
of the objects, which maintain the gland structure informa-
tion during the training stage. Third, the marker loss will
control the over-segmentation and under-segmentation is-
sue for accurate marker detection.

To demonstrate the effectiveness of MA distance trans-
form with other distance-based metrics, we set up an exper-
iment using our network test with different distance met-
rics, includes the Euclidean distance, Chessboard distance,
Medial axis (MA) distance. To conduct a fair comparison,
marker loss will not apply in this study, and we replace
the MA distance metrics to other distance metrics. Sim-
ilar to our post-processing approach, the predicted gland
foreground segmentation and the predicted distance map are
utilized to produce the final fine segmentation. From the re-
sults in Table. 4., we noted that our methods outperform the
other two distance metrics. It gives the fact that medial axis
distance metrics achieved the best performance comparing
to use Euclidean and chessboard distance metrics.

5. Conclusion

In this paper, we propose a topology-aware network (TA-
Net) to address the challenge of partitioning densely clus-
tered glands in histopathology images. Firstly, the pro-
posed multitask learning architecture integrates both in-
stance segmentation and gland topology learning and learns
their shared representation. Experimental results show that
TA-Net outperforms the state-of-art multitask architectures,
e.g., DCAN, and single-task architectures. Secondly, we
propose a topology loss using Medial Axis distance map
and gland makers. The loss penalizes the topology changes
between the segmented glands and actual glands. The ex-
tensive experimental results on two public datasets demon-
strate that the proposed TA-Net achieves state-of-the-art
performance for densely clustered gland segmentation. In
the future, we will extend the proposed approach to other

challenging tasks, such as nuclei segmentation and seman-
tic image segmentation.
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