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ABSTRACT 
 
In healthcare, it is essential to explain the decision-making 
process of machine learning models to establish the 
trustworthiness of clinicians. This paper introduces BI-
RADS-Net, a novel explainable deep learning approach for 
cancer detection in breast ultrasound images. The proposed 
approach incorporates tasks for explaining and classifying 
breast tumors, by learning feature representations relevant to 
clinical diagnosis. Explanations of the predictions (benign or 
malignant) are provided in terms of morphological features 
that are used by clinicians for diagnosis and reporting in 
medical practice. The employed features include the BI-
RADS descriptors of shape, orientation, margin, echo pattern, 
and posterior features. Additionally, our approach predicts 
the likelihood of malignancy of the findings, which relates to 
the BI-RADS assessment category reported by clinicians. 
Experimental validation on a dataset consisting of 1,192 
images indicates improved model accuracy, supported by 
explanations in clinical terms using the BI-RADS lexicon.  
 

Index Terms— Breast ultrasound, explainable deep 
learning, multitask learning, BI-RADS 
 

1. INTRODUCTION 
 
Explaining the behavior of machine learning (ML) models 
increases the trustworthiness and confidence in the 
predictions [1, 2]. The importance of ML explainability in 
healthcare cannot be overemphasized, because clinicians 
require to know the ‘reason’ behind the prediction to inform 
diagnosis, risk assessment, treatment planning, etc. [3, 4]. In 
modern computer-aided diagnosis (CAD) systems, it is 

preferred to adopt ML algorithms that provide explanations 
of models’ information processing aligned with the medical 
diagnosis process [5]. However, current CAD systems for 
cancer diagnosis typically output the category of identified 
tumors (benign or malignant) and/or their location in the 
image (or the mask of the tumor overlaid over the background 
tissues). I.e., CAD systems often lack means for associating 
the outputs of algorithms with the underlying descriptors used 
by clinicians for image interpretation and diagnosis. 

In this work, we introduce a novel approach for 
explainable breast cancer diagnosis based on the Breast 
Imaging – Reporting and Data System (BI-RADS) lexicon 
for breast ultrasound (BUS) [6]. The BI-RADS lexicon 
standardizes clinical interpretation and reporting, by using a 
set of descriptors (orientation, shape, margin, echo-pattern, 
and posterior features) and assessment categories (ranging 
from 0 to 6, designating increasing likelihood of malignancy).  

We propose BI-RADS-Net, a deep learning network 
comprising a series of convolutional layers for feature 
extraction, followed by fully-connected layers for output 
prediction. The architecture contains multiple classification 
branches that output five BI-RADS descriptors and the tumor 
class (benign or malignant), and a regression branch that 
outputs the likelihood of malignancy. The choice of a 
regression branch in the architectural design was motivated 
by the widely-reported high inter-observer variability in 
assigning the BI-RADS assessment categories (in particular, 
the poor reproducibility for the subcategories 4A, 4B, and 
4C) [7, 8]. The validation results on a dataset of 1,192 BUS 
images indicate that the proposed multitask approach 
improves the performance in comparison to a single-task 
approach. In addition, the parameters of the feature extraction 
layers are shared between all branches in the network, which 
allows explaining the feature maps that are used for tumor 
classification in terms of the respective BI-RADS descriptors 
and the likelihood of malignancy.  

Prior work in the literature has designed neural network 
(NN) architectures for predicting the BI-RADS category of 
tumors in BUS images, however, without addressing the 
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model explainability [9, 10]. Also, several authors employed 
the BI-RADS descriptors for explaining NN models for 
breast cancer diagnosis in mammography images [11–13]. To 
the best of our knowledge, the paper by Zhang et al. [14] is 
the only work that used the BI-RADS lexicon for 
explainability of NN models for BUS. Although our work has 
similarities to the approach in [14]—both rely on multitask 
learning framework and the BI-RADS terminology—there 
are also multiple differences between the two. Specifically, 
unlike [14], besides the tumor class, our approach outputs all 
five BI-RADS descriptors and the likelihood of malignancy 
(see Fig. 1) which are explicitly associated with the clinical 
features used for BUS interpretation.  

The main contributions of our approach include: 
 An explainable multitask learning approach that 

concurrently outputs the BI-RADS descriptors, BI-RADS 
likelihood of malignancy, and the tumor class (Fig. 1);  

 A network architecture with a regression branch to 
handle the inherent noise in the ground-truth labels for the BI-
RADS categories, caused by inter-observer variability;  

 Increased tumor classification accuracy, via learning 
feature representations related to clinical descriptors; and  

 The capacity to assess uncertainties in the model 
outputs for individual BUS images, based on (dis)agreement 
in the predictions by the different branches of the model. 
 

2. RELATED WORK 
 
2.1. Explainable ML for medical image analysis 
 
The majority of related work on explainable ML in CAD 
employed model saliency as a means for post-hoc visual 
explainability, utilized to outline important regions in images 
that contributed the most to the model prediction [15, 16]. 
Similarly, the attention mechanism in NNs has been used for 

segmentation of organs and lesions [17]. TIRADS clinical 
features were also leveraged for explainable ML of thyroid 
nodules diagnosis [18]. Furthermore, existing models 
focused on concurrently processing medical images and 
creating textual reports similar to clinicians’ reports when 
interpreting medical images [19, 20]. In general, explainable 
ML in healthcare introduces unique challenges that 
reverberate with the very challenges in medical image 
analysis. These include small datasets, low contrast, complex 
image formats (e.g., 3D or 4D image modalities), large image 
size and high resolution, and important details removed by 
preprocessing techniques. In addition, the level of risk and 
responsibility for explainable ML in healthcare are uniquely 
distinct, since the decisions may affect the lives of patients.  
 
2.2. Explainable ML for breast cancer diagnosis 
 
A body of work investigated the problem of explainable ML 
for breast cancer CAD. Shen et al. [21] introduced an 
explainable ML classifier that indicated the location of 
suspected lesions in mammograms. Similarly, Wu et al. [11] 
proposed DeepMiner, an NN architecture for outputting both 
the tumor class and text explanations using the BI-RADS 
lexicon for mammography. Kim et al. [12, 13] proposed NN 
models that employed the shape and margin of tumors in 
mammograms for predicting the class label and BI-RADS 
category. A key shortcoming of these approaches in 
mammography is using only two or three BI-RADS 
descriptors, which often lack sufficient information to fully 
explain the intricate process of tumor diagnosis. 

Similarly, despite the impressive recent progress in BUS 
tumor classification and segmentation, the explainability for 
BUS CAD has been less extensively explored by the research 
community. The only approach on explainability for BUS 
CAD was proposed by Zhang et al. [14]. The authors 

 
Fig. 1. (a) Typical output of a conventional BUS CAD system; (b) Output of the proposed explainable BUS CAD system for the same two 
images. The bars in the sub-figures indicate the predicted class probabilities by the CAD systems. 



introduced a preprocessing step for emphasizing the BI-
RADS descriptors of shape and margin in BUS images, and 
an encoder-decoder NN was used for predicting the tumor 
class and reconstructing the input image. A limitation of the 
approach in [14] is that only the shape and margin were used 
for tumor classification, and the class probabilities of these 
two descriptors were not output by the model (to explain the 
tumor classification). Approaches that concentrated on 
generating textual reports for explaining NN models for BUS 
[22], as well as for identifying explainable salient regions in 
breast histopathology images [23] were also proposed in the 
literature. Despite these latest efforts, explainability of CAD 
systems for breast cancer diagnosis is still an open research 
problem that requires further attention.  
 

3. PROPOSED METHOD 
 
3.1. BI-RADS lexicon 
 
BI-RADS is a risk assessment system introduced by the 
American College of Radiology to standardize the 
assessment, reporting, and teaching of breast imaging. It 
applies to mammography, ultrasound, and MRI. The BI-
RADS lexicon assigns a mass finding to one of seven 
assessment categories shown in Table I, that designate a 
likelihood of malignancy in the 0-100% range. E.g., BI-
RADS category 0 is assigned to cases with incomplete 
imaging, whereas BI-RADS category 6 is assigned to biopsy-
validated malignant cases. For BI-RADS category 4, three 
sub-categories were introduced that designate low suspicion 
(4A), moderate suspicion (4B), and high suspicion of 
malignancy (4C). The BI-RADS categories are important for 
cancer risk management, where BI-RADS 3 patients are 
scheduled for short-term follow-up imaging, whereas BI-
RADS 4 and 5 patients undergo diagnostic biopsy.  

Besides the assessment categories, the BI-RADS lexicon 
provides terminology to describe different features of the 
mass findings in BUS. The BI-RADS descriptors for BUS are 
shown in Table II, and include shape, orientation, margin, 
echo pattern, and posterior features. The table also lists the 
standardized terms used for the classes of the descriptors.  

 
3.2. Data 
 
The presented approach is evaluated with 1,192 BUS images, 
obtained by combining two datasets, referred to as BUSIS 
[24] and BUSI [25]. The BUSIS dataset consists of 562 
images, of which 306 images contain benign and 256 contain 
malignant tumors. From the BUSI dataset we used a subset 
of 630 images containing tumors, of which 421 have benign 
and 209 have malignant tumors. The combined dataset has 
class imbalance, as it consists of 727 benign and 465 
malignant images. All images were annotated with ground-
truth labels for the tumor class, BI-RADS descriptors, and BI-
RADS assessment category. Image acquisition for the two 
datasets was performed by different types of imaging 

ultrasound devices and with different populations of patients. 
Although this reduces the classification performance of the 
DL models, on the other hand, it improves the robustness of 
the approach to variations in unobserved images. The details 
regarding the BUSIS and BUSI datasets are provided in the 
respective publications [24] and [25]. 
 

TABLE I. BI-RADS ASSESSMENT CATEGORIES  
Category Assessment Likelihood of 

Malignancy 
Management 

0 Incomplete NA Additional imaging 
required 

1 Negative No cancer 
detected 

Annual screening 

2 Benign 0% Annual screening 
3 Probably benign 0-2% Follow-up in 6 months 
4A Suspicious 2-10% Tissue diagnosis 
4B Suspicious 10-50% Tissue diagnosis 
4C Suspicious 50-95% Tissue diagnosis 
5 Malignant >95% Tissue diagnosis 
6 Biopsy-proven 

malignancy 
Cancer present Surgical excision 

 
TABLE II. BI-RADS DESCRIPTORS FOR BUS IMAGES 

BI-RADS Descriptors Descriptors Class 
Shape Oval, Round, Irregular 
Orientation Parallel, Not parallel 
Margin Circumscribed, Not circumscribed 

(Indistinct, Angular, Microlobulated, 
Spiculated) 

Echo pattern Anechoic, Hypoechoic, Isoechoic, 
Hyperechoic, Complex cystic and solid, 
Heterogeneous 

Posterior features No posterior features, Enhancement, 
Shadowing, Combined pattern 

 
3.3. Network architecture 
 
The architecture of BI-RADS-Net is depicted in Fig. 2, and it 
consists of two major components: a shared backbone 
network and task-specific networks entailing branches for 
predicting the BI-RADS descriptors, BI-RADS likelihood of 
malignancy, and the tumor category. The backbone network 
employs convolutional and max-polling layers for extracting 
relevant features in input BUS images. The learned feature 
maps are employed by the BI-RADS descriptors branch to 
predict the five descriptors from Table II. The outputs for the 
BI-RADS descriptors are concatenated with the feature maps 
from the base network and are fed to a regression branch to 
predict the likelihood of malignancy. The regression branch 
outputs a continuous value ranging from 0% to 100%. The 
tumor classification branch merges the features maps from 
the backbone network and the other two branches to output a 
binary benign or malignant class label.  

The ground-truth labels for the BI-RADS descriptors are 
as listed in Table II. I.e., shape has 2 classes (parallel and not 
parallel), orientation has 3 classes, echo pattern has 6 classes, 
and posterior features has 4 classes. The margin descriptor 
can have multiple annotations. For instance, the margin in Fig. 



1(b) is not circumscribed, and it is both indistinct and 
spiculated. Therefore, the first branch for the margin in BI-
RADS-Net has only 2 classes (circumscribed and not 
circumscribed), and afterward, another sub-branch is 
introduced that outputs binary values for the indistinct, 
angular, microlobulated, and spiculated margin sub-classes.  

For the likelihood of malignancy branch, as ground-truth 
we used continuous values corresponding to the BI-RADS 
assessment categories shown in Table 1. We adopted the 
median likelihood of malignancy, as follows: Category 3 – 
1%, Category 4A – 6%, Category 4B – 30%, Category 4C – 
72.5%, and Category 5 – 97.5%. Predicting continuous values 
for the likelihood of malignancy using a regression branch 
instead of categorical variables enables the network to deal 
with inter-observer variability in the BI-RADS category 
labels. Note also that the BUSIS and BUSI datasets do not 
contain images with BI-RADS 0, 1, 2, or 6 categories. 

In the multitask model, Task 1 to 5 are the BI-RADS 
descriptors, Task 6 to 9 are the sub-classes for the margin BI-
RADS descriptor, Task 10 is the BI-RADS likelihood of 
malignancy, and Task 11 is the tumor classification branch. 
For each task 𝑘 , the network loss function is denoted by 
ℒ௞(𝑋௞ , 𝑌௞) , where 𝑋௞  is the predicted value and 𝑌௞  is the 
ground-truth label (for classification) or value (for 
regression). Since the outputs of the likelihood of malignancy 
branch (Task 10) and the tumor classification branch (Task 
11) both reflect the level of risk that the present tumor in the 
image is malignant, we added an additional loss term ℒ௔ to 
enforce an agreement between the two branches. The total 
loss of the model is calculated as the weighted sum of all tasks, 
that is, ℒ = ∑ 𝜆௜

௄
௜ୀଵ ℒ௜(𝑋௜ , 𝑌௜) + 𝜆௔ℒ௔(|𝑋ଵଵ−𝑋ଵ଴|, |𝑌ଵଵ−𝑌ଵ଴|). 

The symbol 𝜆௜ denotes the weight coefficient of task 𝑖, 𝐾 =
11 is the number of tasks, and 𝜆௔ is the weight coefficient for 
the ℒ௔ term. Cross-entropy loss and mean-square error loss 
are used for the classification and regression branches, 
respectively.  

3.4. Implementation details 
 
The size of input images to the network was set to 256×256 
pixels. In order to prevent distortion of the morphological 
features, such as shape and orientation, the original BUS 
images were first cropped to the largest squared segment that 
encompasses the tumor, and afterward, the cropped segment 
was resized to 256×256 pixels. If the original images were 
directly resized to 256×256 pixels, the labels for the shape 
and orientation for some images would be incorrect (e.g., the 
shape of some tumors can change from oval to round when 
wide rectangular images are resized to square images). 

Next, for each BUS image comprising a single gray 
channel, we added two additional channels. One channel was 
obtained by performing histogram equalization to the gray 
channel, and another channel was obtained by applying 
smoothing to the gray channel. We found that this simple 
preprocessing step was beneficial to improving the model 
performance. One possible explanation is that histogram 
equalization and smoothing reduced the variations across the 
images in BUSIS and BUSI datasets, and resulted in a more 
uniformly distributed set of images. 

We used five-fold cross-validation, i.e., the images were 
split into 80% training and 20% testing sets. Further, 15% of 
the images in the training set were used for validation.  

For the backbone network we used the encoder of a 
VGG-16 model, initialized with parameters pretrained on the 
ImageNet dataset. The parameters in all network layers were 
updated during training. We applied various types of data 
augmentation techniques, including zoom (20%), width shift 
(10%), rotation (5 degrees), shear (20%), and horizontal flip. 
We used a batch size of 6 images. The models were trained 
by using adaptive moment estimator optimized (Adam), with 
an initial learning rate of 10-5, which was reduced to 10-6 if 
the loss of the validation set did not reduce for 15 epochs. The 
training was stopped when the loss of the validation set did  

 
Fig. 2. Network architecture of the proposed BI-RADS-Net for BUS CAD. 



 
TABLE IV. MULTITASK APPROACH EVALUATION 

 Method 
Tumor Class 

Accuracy Sensitivity Specificity 
Single Branch Tumor Class 0.864 0.795 0.908 
+ Margin 0.878 0.817 0.918 
+ Orientation + Shape 0.883 0.821 0.922 
+ Echo pattern + Post. feat. 0.887 0.831 0.923 
+ Likelihood of Malignancy = 
BI-RADS-Net 0.889 0.838 0.923 

 
not reduce for 30 epochs. For the loss weight coefficients 𝜆ଵ 
to 𝜆ଵଵ, we adopted the following values: (0.2, 0.2, 0.2, 0.2, 
0.2, 0.1, 0.1, 0.1, 0.1, 0.2, 0.5). That is, the largest weight was 
assigned to the tumor class branch. The weight 𝜆௔ for the loss 
term ℒ௔ was set to 0.2 as well.  

 
4. EXPERIMENTAL RESULTS 

 
The results of an ablation study performed to evaluate the 
impact of the different components in the design of BI-
RADS-Net are shown in Table III. The ablation study 
assesses the contributions by data augmentation, pretrained 
network parameters on the ImageNet dataset, additional 
image channels with histogram equalization and smoothing, 
and cropping the original images to square-size segments. 
The results indicate that the network achieved over 80% 
accuracy for all five BI-RADS descriptors, whereas the tumor 
class accuracy reached 88.9%. Due to space limitation, the 
results for the margin sub-classes are not presented (for all 4 
sub-classes the accuracy overpassed 80%). Table III also 
presents a comparison for the presented model with a VGG 
backbone to ResNet50 and EfficientNet-B0 backbones. 

Table IV presents the evaluation of the effectiveness of 
the multitask learning approach. The accuracy of a single-
task model for tumor classification is 86.4%, and it increases 
to 88.9% for the model with multiple branches. Thus, the 
information provided by the BI-RADS descriptors benefits 
the tumor classification branch. In general, the largest 
positive correlation with the BUS tumor class is reported in 
the literature for the margin descriptor, followed by shape and 
orientation. Echo pattern and posterior features have lower 
correlations comparatively; however, the two descriptors are 
still important for BUS interpretation and diagnosis. The 

contribution by the likelihood of malignancy branch to the 
tumor class prediction in Table IV is lower compared to the 
other branches. Examples of outputs generated by BI-RADS-
Net are shown in Fig. 1. 

The objective of our approach is to provide explanations 
for the classification of BUS images containing tumors into a 
benign or malignant class. Explainability is achieved by 
reporting the BI-RADS descriptors and likelihood of 
malignancy. We hold that this information would be 
beneficial and valuable to clinicians for interpreting BUS 
images. First, this information provides a link between the 
information processing by the CAD model and medical 
diagnosis by clinicians. Namely, clinical interpretation 
involves observing the shape, orientation, margin, echo 
pattern, and posterior features of masses, in combination with 
associated features (duct, skin changes), special cases 
(implants), and considering additional information, such as 
the patient medical history, age, lifestyle, or known risk 
factors. Second, the provided information can be helpful for 
the reporting phase. Third, evaluating the uncertainties in the 
ML predictions on individual BUS images is especially 
challenging: whenever there is a discrepancy between a 
clinician’s interpretation and the CAD tumor class prediction 
on an individual BUS image, the clinician might be 
suspicious about the CAD prediction. Providing explanations 
via the BI-RADS descriptors and the BI-RADS likelihood of 
malignancy can assist clinicians in understanding the level of 
uncertainties in the model’s output on individual BUS 
images. Subsequently, the provision of explainability using 
the BI-RADS lexicon can increase the trustworthiness of 
clinicians in the CAD systems.  

The proposed approach differs from the common post-
hoc explainability approaches, where explanations of the 
decision-making for a model are provided after the training 
phase is completed. Instead, we use a single end-to-end deep 
learning model that furnishes explainability concurrently 
with the training/testing phases. We justify such an approach 
because we relied on a clinically validated set of visual 
features—BI-RADS descriptors—to explain BUS analysis.  

We posit that explainability is task-dependent and 
audience-dependent, and therefore, requires ML models 
designed for specific tasks and targeted to end-users. For 
instance, the practical relevance of our proposed explainable 
model for BUS would diminish for other tasks, because they 

TABLE III. ABLATION STUDY, REGARDING THE IMPACT OF DIFFERENT COMPONENTS IN THE NETWORK DESIGN ON THE PERFORMANCE 

Method 
Tumor Class BI-RADS Descriptors 

Likelihood of 
Malignancy 

Accuracy Sensitivity Specificity Shape Orientation Margin Echo Pat. Post. Feat. R2 MSE 
BI-RADS-Net 0.889 0.838 0.923 0.816 0.872 0.873 0.825 0.830 0.671 0.153 
Without Augmentation 0.868 0.789 0.919 0.832 0.848 0.855 0.804 0.828 0.648 0.159 
Without Pretraining* 0.828 0.746 0.881 0.773 0.804 0.794 0.726 0.731 0.592 0.171 
Single Channel Images* 0.817 0.726 0.875 0.764 0.809 0.792 0.720 0.739 0.582 0.173 
Without Image Cropping* 0.799 0.711 0.855 0.755 0.788 0.774 0.716 0.729 0.528 0.184 

ResNet Backbone 0.883 0.841 0.909 0.816 0.850 0.868 0.813 0.831 0.664 0.155 
EfficientNet Backbone 0.856 0.826 0.904 0.819 0.858 0.847 0.795 0.826 0.667 0.154 

 * The ablation steps are progressively applied, i.e., the model without augmentation is afterward evaluated without pretrained weights, etc. 



employ different image features for representation learning. 
Likewise, our approach may not provide adequate 
explainability to a data scientist without medical knowledge, 
or to patients. In this respect, our model is designed for 
providing explanations to and assisting BUS clinicians.  

And, on a separate note, although it is possible to train 
individual single-task NNs for each BI-RADS descriptor to 
provide explainability, sharing the encoder by all branches in 
BI-RADS-Net ensures that the features maps used for tumor 
classification are relevant to the BI-RADS descriptors and 
likelihood of malignancy.  

 
5. CONCLUSION 

 
This paper describes BI-RADS-Net, a multitask deep 
learning model for explainable BUS CAD using the BI-
RADS lexicon. The network architecture consists of multiple 
classification and regression branches that output the tumor 
class, five BI-RADS descriptors, and the likelihood of 
malignancy (in relation to the BI-RADS assessment 
category). The prediction of the tumor class (benign or 
malignant) made by the model is presented in a form that is 
understandable to clinicians via the BI-RADS descriptors of 
mass findings and the risk of malignancy. The proposed 
approach departs from the traditional post-hoc techniques for 
explainable deep learning, and instead integrates the 
explainability directly into the outputs generated by the 
model. The reason such an explainable approach can be 
effective is because we rely on a predefined set of 
morphological mass features, adopted from the BI-RADS 
lexicon. Furthermore, such an approach is aligned with the 
visual perception and reasoning process by clinicians when 
interpreting BUS images. Conclusively, the proposed 
approach is designed to assist clinicians in interpretation, 
analysis, and reporting in BUS. In future work, we will 
conduct a study for qualitative assessment of the level of 
explainability of our approach with BUS clinicians via 
structured interviews and questionnaires. 
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